找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Medical Applications with Disentanglements; First MICCAI Worksho Jana Fragemann,Jianning Li,Jens Kleesiek Conference proceedings 2023 The E

[复制链接]
楼主: Helmet
发表于 2025-3-27 00:23:32 | 显示全部楼层
发表于 2025-3-27 02:23:00 | 显示全部楼层
HSIC-InfoGAN: Learning Unsupervised Disentangled Representations by Maximising Approximated Mutual IfoGAN is a popular disentanglement framework that learns unsupervised disentangled representations by maximising the mutual information between latent representations and their corresponding generated images. Maximisation of mutual information is achieved by introducing an auxiliary network and trai
发表于 2025-3-27 07:17:06 | 显示全部楼层
发表于 2025-3-27 10:58:06 | 显示全部楼层
发表于 2025-3-27 15:52:20 | 显示全部楼层
Instance-Specific Augmentation of Brain MRIs with Variational Autoencodersowever, a typical spatial augmentation scheme is built upon ad hoc selections of spatial transformation parameters which are not determined by the data set and therefore may not capture spatial variations in the data. For segmentation networks trained in the low-data regime, these ad hoc transformat
发表于 2025-3-27 20:43:26 | 显示全部楼层
发表于 2025-3-27 23:23:53 | 显示全部楼层
发表于 2025-3-28 05:30:41 | 显示全部楼层
Disentangling Factors of Morphological Variation in an Invertible Brain Aging Modeln models that estimate a brain’s biological age using structural MR images, generative models that capture the conditional distribution of aging-related brain morphology changes, and hybrid generative-inferential models that handle both tasks. Generative models are useful when systematically analyzi
发表于 2025-3-28 07:55:49 | 显示全部楼层
发表于 2025-3-28 12:24:15 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 19:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表