找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Mathematik-Vorkurs; Übungs- und Arbeitsb Wolfgang Schäfer,Kurt Georgi Textbook 1994Latest edition B. G. Teubner Verlagsgesellschaft Leipzig

[复制链接]
楼主: 马用
发表于 2025-3-26 21:16:52 | 显示全部楼层
发表于 2025-3-27 01:45:27 | 显示全部楼层
发表于 2025-3-27 07:02:57 | 显示全部楼层
t methods can find direct application in the development of parallel algorithms for scientific computation..Simple expressions are presented that describe how to schedule computational work with varying degrees of granularity. We use the Encore Multimax as a hardware simulator to investigate the per
发表于 2025-3-27 09:32:45 | 显示全部楼层
Wolfgang Schäfer,Kurt Georgieer who needs to have direct access to such algorithms. The programs are all field tested. The enclosed CD-ROM contains .all co.mputer codes, a compiler and a test bed of programs and data for most of the algorithms. Each test program includes detailed comments and describes available options, all c
发表于 2025-3-27 16:28:32 | 显示全部楼层
发表于 2025-3-27 21:02:57 | 显示全部楼层
c ideas of numerical analysis in a style as concise as possible. Its volume is scaled to a one-yearcourse, i.e., a two-semester course, addressing second-yearstudents at a German university or advanced undergraduate or first-year graduate students at an American university.
发表于 2025-3-27 23:32:17 | 显示全部楼层
发表于 2025-3-28 06:06:14 | 显示全部楼层
nction evaluations per step than standard explicit Runge-Kutta formulae of the same order. In this paper we analyse completely the 5(4) two step Runge-Kutta formula with the minimum number of stages and show that it is possible to obtain a Runge-Kutta formula of this class with "free" interpolation
发表于 2025-3-28 09:50:26 | 显示全部楼层
nction evaluations per step than standard explicit Runge-Kutta formulae of the same order. In this paper we analyse completely the 5(4) two step Runge-Kutta formula with the minimum number of stages and show that it is possible to obtain a Runge-Kutta formula of this class with "free" interpolation
发表于 2025-3-28 11:46:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 08:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表