找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine-learning Techniques in Economics; New Tools for Predic Atin Basuchoudhary,James T. Bang,Tinni Sen Book 2017 The Author(s) 2017 Mach

[复制链接]
查看: 15071|回复: 36
发表于 2025-3-21 16:38:09 | 显示全部楼层 |阅读模式
书目名称Machine-learning Techniques in Economics
副标题New Tools for Predic
编辑Atin Basuchoudhary,James T. Bang,Tinni Sen
视频video
概述Offers a guide to how machine learning techniques can improve predictive power in answering economic questions.Provides R codes to help guide the researcher in applying machine learning techniques usi
丛书名称SpringerBriefs in Economics
图书封面Titlebook: Machine-learning Techniques in Economics; New Tools for Predic Atin Basuchoudhary,James T. Bang,Tinni Sen Book 2017 The Author(s) 2017 Mach
描述This book develops a machine-learning framework for predicting economic growth. It can also be considered as a primer for using machine learning (also known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists. .
出版日期Book 2017
关键词Machine learning; Data mining; Economic growth; Prediction; Ranking predictive variables; Forecasting; Eco
版次1
doihttps://doi.org/10.1007/978-3-319-69014-8
isbn_softcover978-3-319-69013-1
isbn_ebook978-3-319-69014-8Series ISSN 2191-5504 Series E-ISSN 2191-5512
issn_series 2191-5504
copyrightThe Author(s) 2017
The information of publication is updating

书目名称Machine-learning Techniques in Economics影响因子(影响力)




书目名称Machine-learning Techniques in Economics影响因子(影响力)学科排名




书目名称Machine-learning Techniques in Economics网络公开度




书目名称Machine-learning Techniques in Economics网络公开度学科排名




书目名称Machine-learning Techniques in Economics被引频次




书目名称Machine-learning Techniques in Economics被引频次学科排名




书目名称Machine-learning Techniques in Economics年度引用




书目名称Machine-learning Techniques in Economics年度引用学科排名




书目名称Machine-learning Techniques in Economics读者反馈




书目名称Machine-learning Techniques in Economics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:20:25 | 显示全部楼层
发表于 2025-3-22 00:55:14 | 显示全部楼层
发表于 2025-3-22 07:10:06 | 显示全部楼层
发表于 2025-3-22 11:50:35 | 显示全部楼层
发表于 2025-3-22 14:26:49 | 显示全部楼层
Predicting Recessions: What We Learn from Widening the Goalposts,ct” growth variables to check whether these variables are better at predicting recessions. We show how prediction performance of algorithms differs widely depending on the type of prediction criteria. We can, however, identify some of the most salient predictors of recessions. These suggest that fis
发表于 2025-3-22 20:52:44 | 显示全部楼层
发表于 2025-3-22 23:57:39 | 显示全部楼层
发表于 2025-3-23 02:13:15 | 显示全部楼层
,Predicting a Country’s Growth: A First Look,o validate different growth models. We suggest that validated algorithms enhance the confidence academics should place on any given theoretical growth model. We then show how machine learning can help researchers understand what kinds of concepts may make theoretical growth models more complete.
发表于 2025-3-23 07:08:28 | 显示全部楼层
Book 2017 known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists. .
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 20:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表