找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Medical Imaging; 12th International W Chunfeng Lian,Xiaohuan Cao,Pingkun Yan Conference proceedings 2021 Springer Natur

[复制链接]
查看: 29613|回复: 63
发表于 2025-3-21 17:09:45 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Medical Imaging
副标题12th International W
编辑Chunfeng Lian,Xiaohuan Cao,Pingkun Yan
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning in Medical Imaging; 12th International W Chunfeng Lian,Xiaohuan Cao,Pingkun Yan Conference proceedings 2021 Springer Natur
描述This book constitutes the proceedings of the 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with MICCAI 2021, in Strasbourg, France, in September 2021.*.The 71 papers presented in this volume were carefully reviewed and selected from 92 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc. .*The workshop was held virtually..
出版日期Conference proceedings 2021
关键词artificial intelligence; big medical imaging data analytics; bioinformatics; cellular image analysis; co
版次1
doihttps://doi.org/10.1007/978-3-030-87589-3
isbn_softcover978-3-030-87588-6
isbn_ebook978-3-030-87589-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Machine Learning in Medical Imaging影响因子(影响力)




书目名称Machine Learning in Medical Imaging影响因子(影响力)学科排名




书目名称Machine Learning in Medical Imaging网络公开度




书目名称Machine Learning in Medical Imaging网络公开度学科排名




书目名称Machine Learning in Medical Imaging被引频次




书目名称Machine Learning in Medical Imaging被引频次学科排名




书目名称Machine Learning in Medical Imaging年度引用




书目名称Machine Learning in Medical Imaging年度引用学科排名




书目名称Machine Learning in Medical Imaging读者反馈




书目名称Machine Learning in Medical Imaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:22:04 | 显示全部楼层
Machine Learning in Medical Imaging978-3-030-87589-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-22 01:26:38 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/m/image/620678.jpg
发表于 2025-3-22 07:04:09 | 显示全部楼层
https://doi.org/10.1007/978-3-030-87589-3artificial intelligence; big medical imaging data analytics; bioinformatics; cellular image analysis; co
发表于 2025-3-22 12:17:55 | 显示全部楼层
发表于 2025-3-22 14:28:29 | 显示全部楼层
Tapabrata Chakraborti,Fergus Gleeson,Jens Rittscher many technology generations of semiconductor logic and memoLife-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluati
发表于 2025-3-22 19:23:51 | 显示全部楼层
Hao Guan,Li Wang,Dongren Yao,Andrea Bozoki,Mingxia Liu many technology generations of semiconductor logic and memoLife-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluati
发表于 2025-3-22 21:26:23 | 显示全部楼层
发表于 2025-3-23 03:51:32 | 显示全部楼层
发表于 2025-3-23 05:55:54 | 显示全部楼层
Jie Wei,Yongsheng Pan,Yong Xia,Dinggang Shench and gestures in making Human—Virtual Human interfaces more effective. Miller [33] suggests that only 7% of a message is sent through words: the remainder is sent through facial expressions (55%) and vocal intonation (38%). Therefore in both analysis of human conversations and in the synthesis of
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 22:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表