找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Clinical Neuroimaging; 6th International Wo Ahmed Abdulkadir,Deepti R. Bathula,Yiming Xiao Conference proceedings 2023

[复制链接]
查看: 36398|回复: 59
发表于 2025-3-21 19:12:02 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Clinical Neuroimaging
副标题6th International Wo
编辑Ahmed Abdulkadir,Deepti R. Bathula,Yiming Xiao
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning in Clinical Neuroimaging; 6th International Wo Ahmed Abdulkadir,Deepti R. Bathula,Yiming Xiao Conference proceedings 2023
描述This book constitutes the refereed proceedings of the 6th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2023, held in Conjunction with MICCAI 2023 in Vancouver, Canada, in October 2023. .The book includes 16 papers which were carefully reviewed and selected from 28 full-length submissions..The 6th International Workshop on Machine Learning in Clinical Neuroimaging (MLCN 2023) aims to bring together the top researchers in both machine learning and clinical neuroscience as well as tech-savvy clinicians to address two main challenges: 1) development of methodological approaches for analyzing complex and heterogeneous neuroimaging data (machine learning track); and 2) filling the translational gap in applying existing machine learning methods in clinical practices (clinical neuroimaging track)..The papers are categorzied into topical sub-headings on Machine Learning and Clinical Applications..
出版日期Conference proceedings 2023
关键词artificial intelligence; bioinformatics; computer networks; computer science; computer systems; computer
版次1
doihttps://doi.org/10.1007/978-3-031-44858-4
isbn_softcover978-3-031-44857-7
isbn_ebook978-3-031-44858-4Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Machine Learning in Clinical Neuroimaging影响因子(影响力)




书目名称Machine Learning in Clinical Neuroimaging影响因子(影响力)学科排名




书目名称Machine Learning in Clinical Neuroimaging网络公开度




书目名称Machine Learning in Clinical Neuroimaging网络公开度学科排名




书目名称Machine Learning in Clinical Neuroimaging被引频次




书目名称Machine Learning in Clinical Neuroimaging被引频次学科排名




书目名称Machine Learning in Clinical Neuroimaging年度引用




书目名称Machine Learning in Clinical Neuroimaging年度引用学科排名




书目名称Machine Learning in Clinical Neuroimaging读者反馈




书目名称Machine Learning in Clinical Neuroimaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:02:26 | 显示全部楼层
VesselShot: Few-shot Learning for Cerebral Blood Vessel Segmentationerages knowledge from a few annotated support images and mitigates the scarcity of labeled data and the need for extensive annotation in cerebral blood vessel segmentation. We evaluated the performance of VesselShot using the publicly available TubeTK dataset for the segmentation task, achieving a mean Dice coefficient (DC) of ..
发表于 2025-3-22 01:44:58 | 显示全部楼层
Learning Sequential Information in Task-Based fMRI for Synthetic Data Augmentationl information. The synthetic images are evaluated from multiple perspectives including visualizations and an autism spectrum disorder (ASD) classification task. The results show that the synthetic task-based fMRI can provide effective data augmentation in learning the ASD classification task.
发表于 2025-3-22 07:24:01 | 显示全部楼层
发表于 2025-3-22 10:54:16 | 显示全部楼层
Stroke Outcome and Evolution Prediction from CT Brain Using a Spatiotemporal Diffusion Autoencodera dataset consisting of 5,824 CT images from 3,573 patients across two medical centers with minimal labels. Comparative experiments show that our method achieves the best performance for predicting next-day severity and functional outcome at discharge.
发表于 2025-3-22 16:29:08 | 显示全部楼层
Morphological Versus Functional Network Organization: A Comparison Between Structural Covariance Neten morphological and functional networks at the lowest rank (2). Morphology-function network commonality was retained across all ranks in the visual cortex, but broader network organization diverged between morphology and function at higher ranks.
发表于 2025-3-22 19:18:43 | 显示全部楼层
0302-9743 ld in Conjunction with MICCAI 2023 in Vancouver, Canada, in October 2023. .The book includes 16 papers which were carefully reviewed and selected from 28 full-length submissions..The 6th International Workshop on Machine Learning in Clinical Neuroimaging (MLCN 2023) aims to bring together the top re
发表于 2025-3-23 00:56:55 | 显示全部楼层
发表于 2025-3-23 04:38:29 | 显示全部楼层
发表于 2025-3-23 09:15:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 09:28
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表