找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning in Clinical Neuroimaging; 4th International Wo Ahmed Abdulkadir,Seyed Mostafa Kia,Thomas Wolfers Conference proceedings 20

[复制链接]
查看: 50772|回复: 63
发表于 2025-3-21 17:06:49 | 显示全部楼层 |阅读模式
书目名称Machine Learning in Clinical Neuroimaging
副标题4th International Wo
编辑Ahmed Abdulkadir,Seyed Mostafa Kia,Thomas Wolfers
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning in Clinical Neuroimaging; 4th International Wo Ahmed Abdulkadir,Seyed Mostafa Kia,Thomas Wolfers Conference proceedings 20
描述This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. .The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series...
出版日期Conference proceedings 2021
关键词artificial intelligence; bioinformatics; brain mapping; clinical neuroimaging; computational anatomy; com
版次1
doihttps://doi.org/10.1007/978-3-030-87586-2
isbn_softcover978-3-030-87585-5
isbn_ebook978-3-030-87586-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Machine Learning in Clinical Neuroimaging影响因子(影响力)




书目名称Machine Learning in Clinical Neuroimaging影响因子(影响力)学科排名




书目名称Machine Learning in Clinical Neuroimaging网络公开度




书目名称Machine Learning in Clinical Neuroimaging网络公开度学科排名




书目名称Machine Learning in Clinical Neuroimaging被引频次




书目名称Machine Learning in Clinical Neuroimaging被引频次学科排名




书目名称Machine Learning in Clinical Neuroimaging年度引用




书目名称Machine Learning in Clinical Neuroimaging年度引用学科排名




书目名称Machine Learning in Clinical Neuroimaging读者反馈




书目名称Machine Learning in Clinical Neuroimaging读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:14:41 | 显示全部楼层
Distinguishing Healthy Ageing from Dementia: A Biomechanical Simulation of Brain Atrophy Using Deep eep learning framework for hyper-elastic strain modelling of brain atrophy, during healthy ageing and in Alzheimer’s Disease. The framework directly models the effects of age, disease status, and scan interval to regress regional patterns of atrophy, from which a strain-based model estimates deforma
发表于 2025-3-22 02:42:27 | 显示全部楼层
发表于 2025-3-22 07:21:39 | 显示全部楼层
Patch vs. Global Image-Based Unsupervised Anomaly Detection in MR Brain Scans of Early Parkinsonian btle tasks such as the identification of barely visible brain lesions, especially given the lack of annotated datasets. Good candidate approaches are patch-based unsupervised pipelines which have both the advantage to increase the number of input data and to capture local and fine anomaly patterns d
发表于 2025-3-22 10:43:07 | 显示全部楼层
MRI Image Registration Considerably Improves CNN-Based Disease Classificationsonance imaging (MRI) brain scans. These scans usually undergo several preprocessing steps, including image registration. However, the effect of image registration methods on the performance of the machine learning classifier is poorly understood. In this study, we train a convolutional neural netwo
发表于 2025-3-22 14:48:00 | 显示全部楼层
发表于 2025-3-22 17:19:42 | 显示全部楼层
发表于 2025-3-22 22:22:53 | 显示全部楼层
PialNN: A Fast Deep Learning Framework for Cortical Pial Surface Reconstructione introduce Pial Neural Network (PialNN), a 3D deep learning framework for pial surface reconstruction. PialNN is trained end-to-end to deform an initial white matter surface to a target pial surface by a sequence of learned deformation blocks. A local convolutional operation is incorporated in each
发表于 2025-3-23 04:03:23 | 显示全部楼层
发表于 2025-3-23 09:09:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 02:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表