找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases. Research Track; European Conference, Nuria Oliver,Fernando Pérez-Cruz,Jose A. Lozano

[复制链接]
楼主: LH941
发表于 2025-3-28 15:26:25 | 显示全部楼层
发表于 2025-3-28 22:06:36 | 显示全部楼层
Model-Based Offline Policy Optimization with Distribution Correcting Regularizationon and offline data distribution via the DICE framework [.], and then regularizes the model-predicted rewards with the ratio for pessimistic policy learning. Extensive experiments show our DROP can achieve comparable or better performance compared to baselines on widely studied offline RL benchmarks.
发表于 2025-3-28 23:05:46 | 显示全部楼层
发表于 2025-3-29 05:41:21 | 显示全部楼层
Periodic Intra-ensemble Knowledge Distillation for Reinforcement Learningnment while periodically sharing knowledge amongst policies in the ensemble through knowledge distillation. Our experiments demonstrate that PIEKD improves upon a state-of-the-art RL method in sample efficiency on several challenging MuJoCo benchmark tasks. Additionally, we perform ablation studies to better understand PIEKD.
发表于 2025-3-29 08:34:51 | 显示全部楼层
Ensemble and Auxiliary Tasks for Data-Efficient Deep Reinforcement Learningver, we derive a refined bias-variance-covariance decomposition to analyze the different ways of learning ensembles and using auxiliary tasks, and use the analysis to help provide some understanding of the case study. Our code is open source and available at ..
发表于 2025-3-29 15:17:48 | 显示全部楼层
发表于 2025-3-29 19:06:50 | 显示全部楼层
Conservative Online Convex Optimizationgret algorithm for online convex optimization into one that, at the same time, satisfies the conservativeness constraint and maintains the same regret order. Finally, we run an extensive experimental campaign, comparing and analyzing the performance of our meta-algorithm with that of state-of-the-art algorithms.
发表于 2025-3-29 23:25:05 | 显示全部楼层
发表于 2025-3-30 03:26:15 | 显示全部楼层
发表于 2025-3-30 04:07:20 | 显示全部楼层
978-3-030-86485-9Springer Nature Switzerland AG 2021
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 19:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表