找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Toon Calders,Floriana Esposito,Rosa Meo Conference proceedings

[复制链接]
查看: 13994|回复: 63
发表于 2025-3-21 17:53:03 | 显示全部楼层 |阅读模式
书目名称Machine Learning and Knowledge Discovery in Databases
副标题European Conference,
编辑Toon Calders,Floriana Esposito,Rosa Meo
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning and Knowledge Discovery in Databases; European Conference, Toon Calders,Floriana Esposito,Rosa Meo Conference proceedings
描述.This three-volume set LNAI 8724, 8725 and 8726 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2014, held in Nancy, France, in September 2014. The 115 revised research papers presented together with 13 demo track papers, 10 nectar track papers, 8 PhD track papers, and 9 invited talks were carefully reviewed and selected from 550 submissions. The papers cover the latest high-quality interdisciplinary research results in all areas related to machine learning and knowledge discovery in databases..
出版日期Conference proceedings 2014
关键词artificial intelligence; association rules; clustering; collaborative filtering; content ranking; data an
版次1
doihttps://doi.org/10.1007/978-3-662-44848-9
isbn_softcover978-3-662-44847-2
isbn_ebook978-3-662-44848-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2014
The information of publication is updating

书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)




书目名称Machine Learning and Knowledge Discovery in Databases影响因子(影响力)学科排名




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度




书目名称Machine Learning and Knowledge Discovery in Databases网络公开度学科排名




书目名称Machine Learning and Knowledge Discovery in Databases被引频次




书目名称Machine Learning and Knowledge Discovery in Databases被引频次学科排名




书目名称Machine Learning and Knowledge Discovery in Databases年度引用




书目名称Machine Learning and Knowledge Discovery in Databases年度引用学科排名




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈




书目名称Machine Learning and Knowledge Discovery in Databases读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:13:04 | 显示全部楼层
发表于 2025-3-22 03:44:02 | 显示全部楼层
发表于 2025-3-22 04:40:24 | 显示全部楼层
发表于 2025-3-22 09:10:32 | 显示全部楼层
发表于 2025-3-22 15:23:16 | 显示全部楼层
Kernel Principal Geodesic Analysistations of data via the mapping to kernel feature space. Conventionally, kPCA relies on Euclidean statistics in kernel feature space. However, Euclidean analysis can make kPCA inefficient or incorrect for many popular kernels that map input points to a . in kernel feature space. To address this prob
发表于 2025-3-22 18:48:42 | 显示全部楼层
Attributed Graph Kernels Using the Jensen-Tsallis ,-Differenceseen probability distributions over the graphs. To this end, we first assign a probability to each vertex of the graph through a continuous-time quantum walk (CTQW). We then adopt the tree-index approach [1] to strengthen the original vertex labels, and we show how the CTQW can induce a probability d
发表于 2025-3-23 01:04:49 | 显示全部楼层
Sub-sampling for Multi-armed Bandits novel algorithm that is based on sub-sampling. Despite its simplicity, we show that the algorithm demonstrates excellent empirical performances against state-of-the-art algorithms, including Thompson sampling and KL-UCB. The algorithm is very flexible, it does need to know a set of reward distribut
发表于 2025-3-23 02:21:50 | 显示全部楼层
发表于 2025-3-23 06:32:11 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 21:25
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表