找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning Challenges; Evaluating Predictiv Joaquin Quiñonero-Candela,Ido Dagan,Florence d’Alc Conference proceedings 2006 Springer-V

[复制链接]
查看: 36908|回复: 70
发表于 2025-3-21 18:03:41 | 显示全部楼层 |阅读模式
书目名称Machine Learning Challenges
副标题Evaluating Predictiv
编辑Joaquin Quiñonero-Candela,Ido Dagan,Florence d’Alc
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Machine Learning Challenges; Evaluating Predictiv Joaquin Quiñonero-Candela,Ido Dagan,Florence d’Alc Conference proceedings 2006 Springer-V
出版日期Conference proceedings 2006
关键词Bayesian inference; Syntax; algorithm; algorithmic learning; algorithms; classification; cognition; computa
版次1
doihttps://doi.org/10.1007/11736790
isbn_softcover978-3-540-33427-9
isbn_ebook978-3-540-33428-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2006
The information of publication is updating

书目名称Machine Learning Challenges影响因子(影响力)




书目名称Machine Learning Challenges影响因子(影响力)学科排名




书目名称Machine Learning Challenges网络公开度




书目名称Machine Learning Challenges网络公开度学科排名




书目名称Machine Learning Challenges被引频次




书目名称Machine Learning Challenges被引频次学科排名




书目名称Machine Learning Challenges年度引用




书目名称Machine Learning Challenges年度引用学科排名




书目名称Machine Learning Challenges读者反馈




书目名称Machine Learning Challenges读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:09:07 | 显示全部楼层
The 2005 PASCAL Visual Object Classes Challenge, object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved.
发表于 2025-3-22 03:50:35 | 显示全部楼层
What Syntax Can Contribute in the Entailment Task,tegorization can be accurately predicted based solely on syntactic cues. Two human annotators examined each pair, showing that a surprisingly large proportion of the data – 34% of the test items – can be handled with syntax alone, while adding information from a general-purpose thesaurus increases this to 48%.
发表于 2025-3-22 07:05:49 | 显示全部楼层
A Lexical Alignment Model for Probabilistic Textual Entailment,ic setting that formalizes the notion of textual entailment. We then describe a concrete alignment-based model for lexical entailment, which utilizes web co-occurrence statistics in a bag of words representation. Finally, we report the results of the model on the . challenge dataset along with some analysis.
发表于 2025-3-22 11:27:39 | 显示全部楼层
Partial Predicate Argument Structure Matching for Entailment Determination,cture matching combined with a WordNet-based lexical similarity measure. In this paper we describe experiments with different system settings conducted to assess the potential and limitations of partial predicate-argument structures in textual entailment determination.
发表于 2025-3-22 13:23:05 | 显示全部楼层
发表于 2025-3-22 19:26:44 | 显示全部楼层
发表于 2025-3-22 22:53:59 | 显示全部楼层
发表于 2025-3-23 03:21:16 | 显示全部楼层
发表于 2025-3-23 07:46:40 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 09:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表