找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Machine Learning; Modeling Data Locall Kaizhu Huang,Haiqin Yang,Michael Lyu Book 2008 Springer-Verlag Berlin Heidelberg 2008 ATSTC.Global l

[复制链接]
查看: 30833|回复: 42
发表于 2025-3-21 17:13:25 | 显示全部楼层 |阅读模式
书目名称Machine Learning
副标题Modeling Data Locall
编辑Kaizhu Huang,Haiqin Yang,Michael Lyu
视频video
概述New unified theory.Detailed graphic illustration.Empirical validation for each model
丛书名称Advanced Topics in Science and Technology in China
图书封面Titlebook: Machine Learning; Modeling Data Locall Kaizhu Huang,Haiqin Yang,Michael Lyu Book 2008 Springer-Verlag Berlin Heidelberg 2008 ATSTC.Global l
描述.Machine Learning - Modeling Data Locally and Globally presents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves as roadmap in various models, but – more importantly – it also motivates a theory that can learn from data both locally and globally. This would help the researchers gain a deeper insight and comprehensive understanding of the techniques in this field. The book reviews current topics,new theories and applications...Kaizhu Huang was a researcher at the Fujitsu Research and Development Center and is currently a research fellow in the Chinese University of Hong Kong. Haiqin Yang leads the image processing group at HiSilicon Technologies. Irwin King and Michael R. Lyu are professors at the Computer Science and Engineering departmentof the Chinese University of Hong Kong..
出版日期Book 2008
关键词ATSTC; Global learning; Hybrid learning; Kernelization; Local learning; ZJUP; algorithms; computer science;
版次1
doihttps://doi.org/10.1007/978-3-540-79452-3
isbn_ebook978-3-540-79452-3Series ISSN 1995-6819 Series E-ISSN 1995-6827
issn_series 1995-6819
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

书目名称Machine Learning影响因子(影响力)




书目名称Machine Learning影响因子(影响力)学科排名




书目名称Machine Learning网络公开度




书目名称Machine Learning网络公开度学科排名




书目名称Machine Learning被引频次




书目名称Machine Learning被引频次学科排名




书目名称Machine Learning年度引用




书目名称Machine Learning年度引用学科排名




书目名称Machine Learning读者反馈




书目名称Machine Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:32:15 | 显示全部楼层
发表于 2025-3-22 03:58:03 | 显示全部楼层
发表于 2025-3-22 06:07:26 | 显示全部楼层
发表于 2025-3-22 12:40:02 | 显示全部楼层
发表于 2025-3-22 15:52:47 | 显示全部楼层
https://doi.org/10.1007/978-3-540-79452-3ATSTC; Global learning; Hybrid learning; Kernelization; Local learning; ZJUP; algorithms; computer science;
发表于 2025-3-22 18:21:50 | 显示全部楼层
Learning Locally and Globally: Maxi-Min Margin Machine,The proposed MEMPM model obtains the decision hyperplane by using only global information, e.g. the mean and covariance matrices. However, although these moments can be more reliably obtained than estimating the distribution, they may still be inaccurate in many cases, e.g. when the data are very sparse.
发表于 2025-3-23 00:18:30 | 显示全部楼层
发表于 2025-3-23 02:09:52 | 显示全部楼层
发表于 2025-3-23 07:45:23 | 显示全部楼层
1995-6819 resents a novel and unified theory that tries to seamlessly integrate different algorithms. Specifically, the book distinguishes the inner nature of machine learning algorithms as either "local learning"or "global learning."This theory not only connects previous machine learning methods, or serves a
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 13:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表