找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Longitudinal Data Analysis; Autoregressive Linea Ikuko Funatogawa,Takashi Funatogawa Book 2018 The Author(s), under exclusive licence to Sp

[复制链接]
查看: 31589|回复: 39
发表于 2025-3-21 18:42:30 | 显示全部楼层 |阅读模式
书目名称Longitudinal Data Analysis
副标题Autoregressive Linea
编辑Ikuko Funatogawa,Takashi Funatogawa
视频video
概述Describes a new analytical approach for longitudinal data, autoregressive linear mixed effects models, in which dynamic models are induced by the auto-regression term.Provides state space representati
丛书名称SpringerBriefs in Statistics
图书封面Titlebook: Longitudinal Data Analysis; Autoregressive Linea Ikuko Funatogawa,Takashi Funatogawa Book 2018 The Author(s), under exclusive licence to Sp
描述This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is wr
出版日期Book 2018
关键词Longitudinal; Mixed Effects; Autoregressive; Dynamic; State Space
版次1
doihttps://doi.org/10.1007/978-981-10-0077-5
isbn_softcover978-981-10-0076-8
isbn_ebook978-981-10-0077-5Series ISSN 2191-544X Series E-ISSN 2191-5458
issn_series 2191-544X
copyrightThe Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
The information of publication is updating

书目名称Longitudinal Data Analysis影响因子(影响力)




书目名称Longitudinal Data Analysis影响因子(影响力)学科排名




书目名称Longitudinal Data Analysis网络公开度




书目名称Longitudinal Data Analysis网络公开度学科排名




书目名称Longitudinal Data Analysis被引频次




书目名称Longitudinal Data Analysis被引频次学科排名




书目名称Longitudinal Data Analysis年度引用




书目名称Longitudinal Data Analysis年度引用学科排名




书目名称Longitudinal Data Analysis读者反馈




书目名称Longitudinal Data Analysis读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:20:46 | 显示全部楼层
Autoregressive Linear Mixed Effects Models,d effects models in which the current response is regressed on the previous response, fixed effects, and random effects. These are an extension of linear mixed effects models and autoregressive models. Autoregressive models regressed on the response variable itself have two remarkable properties: ap
发表于 2025-3-22 02:47:51 | 显示全部楼层
发表于 2025-3-22 06:49:53 | 显示全部楼层
发表于 2025-3-22 10:27:09 | 显示全部楼层
Nonlinear Mixed Effects Models, Growth Curves, and Autoregressive Linear Mixed Effects Models,ssive linear mixed effects models and nonlinear mixed effects models, growth curves, and differential equations. The autoregressive model shows a profile approaching an asymptote, where the change is proportional to the distance remaining to the asymptote. Autoregressive models in discrete time corr
发表于 2025-3-22 16:13:44 | 显示全部楼层
发表于 2025-3-22 18:33:56 | 显示全部楼层
978-981-10-0076-8The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018
发表于 2025-3-22 22:54:51 | 显示全部楼层
Longitudinal Data Analysis978-981-10-0077-5Series ISSN 2191-544X Series E-ISSN 2191-5458
发表于 2025-3-23 03:10:08 | 显示全部楼层
https://doi.org/10.1007/978-981-10-0077-5Longitudinal; Mixed Effects; Autoregressive; Dynamic; State Space
发表于 2025-3-23 08:12:13 | 显示全部楼层
Ikuko Funatogawa,Takashi FunatogawaDescribes a new analytical approach for longitudinal data, autoregressive linear mixed effects models, in which dynamic models are induced by the auto-regression term.Provides state space representati
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 14:30
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表