找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning; A Practical Strategy Alireza Entezami,Bahareh Behka

[复制链接]
查看: 20791|回复: 35
发表于 2025-3-21 18:05:20 | 显示全部楼层 |阅读模式
书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning
副标题A Practical Strategy
编辑Alireza Entezami,Bahareh Behkamal,Carlo De Michele
视频video
丛书名称SpringerBriefs in Applied Sciences and Technology
图书封面Titlebook: Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning; A Practical Strategy Alireza Entezami,Bahareh Behka
描述.This book offers an in-depth investigation into the complexities of long-term structural health monitoring (SHM) in civil structures, specifically focusing on the challenges posed by small data and environmental and operational changes (EOCs). Traditional contact-based sensor networks in SHM produce large amounts of data, complicating big data management. In contrast, synthetic aperture radar (SAR)-aided SHM often faces challenges with small datasets and limited displacement data. Additionally, EOCs can mimic the structural damage, resulting in false errors that can critically affect economic and safety issues. Addressing these challenges, this book introduces seven advanced unsupervised learning methods for SHM, combining AI, data sampling, and statistical analysis. These include techniques for managing datasets and addressing EOCs. Methods range from nearest neighbor searching and Hamiltonian Monte Carlo sampling to innovative offline and online learning frameworks, focusing on data augmentation and normalization. Key approaches involve deep autoencoders for data processing and novel algorithms for damage detection. Validated using simulated data from the I-40 Bridge, USA, and r
出版日期Book 2024
关键词Structural Health Monitoring; SHM; environmental and operational changes; civil structures; Hamiltonian
版次1
doihttps://doi.org/10.1007/978-3-031-53995-4
isbn_softcover978-3-031-53994-7
isbn_ebook978-3-031-53995-4Series ISSN 2191-530X Series E-ISSN 2191-5318
issn_series 2191-530X
copyrightThe Author(s), under exclusive license to Springer Nature Switzerland AG 2024
The information of publication is updating

书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning影响因子(影响力)




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning影响因子(影响力)学科排名




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning网络公开度




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning网络公开度学科排名




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning被引频次




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning被引频次学科排名




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning年度引用




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning年度引用学科排名




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning读者反馈




书目名称Long-Term Structural Health Monitoring by Remote Sensing and Advanced Machine Learning读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:15:19 | 显示全部楼层
发表于 2025-3-22 01:18:29 | 显示全部楼层
Simulating Reality: Numerical Assessments of a Bridge Health Monitoring,l. Notably, this process is difficult and time-consuming for long-term monitoring. For this issue, this chapter aims to validate the proposed probabilistic unsupervised learning method via simulated displacement responses of a numerical model of a real-world bridge structure. On this basis, the nume
发表于 2025-3-22 04:59:53 | 显示全部楼层
From Theory to Reality: Advanced SHM Methods to the Tadcaster Bridge,lly in long-term monitoring programs. In this chapter, real-world applications of the proposed unsupervised learning methods (i.e., HMC-DAE-MD, HMC-UTSL-MD, HMC-DTL-MD, HMC-ODTL-EMD and SLS-ODTL-EMD) developed for coping with the limitation of small data are investigated by using a small set of disp
发表于 2025-3-22 09:46:56 | 显示全部楼层
Conclusions and Prospects for Structural Health Monitoring,echnology of remote sensing and machine learning. For this reason, various unsupervised learning methods have been proposed to detect any abnormal conditions in civil structures under unknown EOCs using small and large sets of displacement responses obtained from SAR images. This chapter aims to men
发表于 2025-3-22 16:44:41 | 显示全部楼层
Alireza Entezami,Bahareh Behkamal,Carlo De Michele. . . . . . . . . . . . . . . . . . 11 I. Markttransparenz durch Marktforschung ........................ 11 Ir. Katalog des Informationsbedarfs ................................ 12 a. Nachfrage .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 . . . . . . . . . . . . . b. Instru
发表于 2025-3-22 20:09:00 | 显示全部楼层
发表于 2025-3-22 22:24:40 | 显示全部楼层
Alireza Entezami,Bahareh Behkamal,Carlo De Michelet es eher der Blick auf Menschen als handlungsmächtige Akteur_innen, die Lebenslagen aktiv bewältigen und eigene Vorstellungen vom ‚guten Leben‘ sowie von Hilfebedarfen haben? Oder werden sie vor allem als Angehörige hilfsbedürftiger Zielgruppen (z.B. Behinderte, Flüchtlinge, Frauen) gesehen, über d
发表于 2025-3-23 01:50:58 | 显示全部楼层
发表于 2025-3-23 09:05:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 03:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表