找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems; Mariana Haragus,Gérard Iooss Textbook 20

[复制链接]
查看: 29506|回复: 35
发表于 2025-3-21 19:27:52 | 显示全部楼层 |阅读模式
书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
编辑Mariana Haragus,Gérard Iooss
视频video
概述Step-by-step examples and exercises are provided throughout, illustrating the variety of possible applications.Written by recognised experts in the field of center manifold and normal form theory.Prov
丛书名称Universitext
图书封面Titlebook: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems;  Mariana Haragus,Gérard Iooss Textbook 20
描述.An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics...Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades...Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate
出版日期Textbook 2011
关键词bifurcations; center manifold reduction; infinite dimensional dynamical systems; normal forms; travellin
版次1
doihttps://doi.org/10.1007/978-0-85729-112-7
isbn_softcover978-0-85729-111-0
isbn_ebook978-0-85729-112-7Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightEDP Sciences 2011
The information of publication is updating

书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems影响因子(影响力)




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems影响因子(影响力)学科排名




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems网络公开度




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems网络公开度学科排名




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems被引频次




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems被引频次学科排名




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems年度引用




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems年度引用学科排名




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems读者反馈




书目名称Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:19:22 | 显示全部楼层
发表于 2025-3-22 03:50:36 | 显示全部楼层
发表于 2025-3-22 06:35:37 | 显示全部楼层
发表于 2025-3-22 09:52:37 | 显示全部楼层
Textbook 2011tems provides the reader with a comprehensive overview of these topics...Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the r
发表于 2025-3-22 15:16:05 | 显示全部楼层
0172-5939 in the field of center manifold and normal form theory.Prov.An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics...Starting with the
发表于 2025-3-22 17:11:54 | 显示全部楼层
Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems
发表于 2025-3-23 00:47:24 | 显示全部楼层
发表于 2025-3-23 03:48:13 | 显示全部楼层
Mariana Haragus,Gérard Iooss Genetische Algorithmen dazu eingesetzt werden, fehlende Kraftfeldparameter auf der Basis einer vorgegebenen Menge experimenteller Strukturdaten von Grund auf in einem automatisierten Prozeß neu zu entwickeln. Die dabei erhaltenen Parameter zur Modellierung einer bestimmten Klasse von .Metall-Komple
发表于 2025-3-23 09:00:05 | 显示全部楼层
Mariana Haragus,Gérard Iooss Genetische Algorithmen dazu eingesetzt werden, fehlende Kraftfeldparameter auf der Basis einer vorgegebenen Menge experimenteller Strukturdaten von Grund auf in einem automatisierten Prozeß neu zu entwickeln. Die dabei erhaltenen Parameter zur Modellierung einer bestimmten Klasse von .Metall-Komple
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 14:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表