找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lobachevsky Geometry and Modern Nonlinear Problems; Andrey Popov Book 2014 Springer International Publishing Switzerland 2014 Tchebychev n

[复制链接]
查看: 51367|回复: 37
发表于 2025-3-21 16:49:13 | 显示全部楼层 |阅读模式
书目名称Lobachevsky Geometry and Modern Nonlinear Problems
编辑Andrey Popov
视频video
概述First summary of research in the field of applications of hyperbolic geometry to solve theoretical physics problems.Clearly written and well presented.Provides an extensive list of relevant literature
图书封面Titlebook: Lobachevsky Geometry and Modern Nonlinear Problems;  Andrey Popov Book 2014 Springer International Publishing Switzerland 2014 Tchebychev n
描述.This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. .The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry..
出版日期Book 2014
关键词Tchebychev nets; hyperbolic geometry; nonlinear equations of mathematical physics; pseudospherical surf
版次1
doihttps://doi.org/10.1007/978-3-319-05669-2
isbn_softcover978-3-319-34622-9
isbn_ebook978-3-319-05669-2
copyrightSpringer International Publishing Switzerland 2014
The information of publication is updating

书目名称Lobachevsky Geometry and Modern Nonlinear Problems影响因子(影响力)




书目名称Lobachevsky Geometry and Modern Nonlinear Problems影响因子(影响力)学科排名




书目名称Lobachevsky Geometry and Modern Nonlinear Problems网络公开度




书目名称Lobachevsky Geometry and Modern Nonlinear Problems网络公开度学科排名




书目名称Lobachevsky Geometry and Modern Nonlinear Problems被引频次




书目名称Lobachevsky Geometry and Modern Nonlinear Problems被引频次学科排名




书目名称Lobachevsky Geometry and Modern Nonlinear Problems年度引用




书目名称Lobachevsky Geometry and Modern Nonlinear Problems年度引用学科排名




书目名称Lobachevsky Geometry and Modern Nonlinear Problems读者反馈




书目名称Lobachevsky Geometry and Modern Nonlinear Problems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:11:53 | 显示全部楼层
发表于 2025-3-22 04:09:02 | 显示全部楼层
Lobachevsky Geometry and Modern Nonlinear Problems
发表于 2025-3-22 04:35:27 | 显示全部楼层
Lobachevsky Geometry and Modern Nonlinear Problems978-3-319-05669-2
发表于 2025-3-22 12:09:38 | 显示全部楼层
n. Dieser dialektische Gegensatz findet in jedem konkreten System seine Lösung. Jedes System zeigt teilweise Momente der Autonomie und teilweise ist es durch Eingriffe von außen steuerbar. Die Autonomieerscheinungen sind wesentlich durch die Zustandsgrößen in ihren Änderungen bei vernach lässigbaren
发表于 2025-3-22 16:32:04 | 显示全部楼层
发表于 2025-3-22 17:27:27 | 显示全部楼层
发表于 2025-3-23 01:00:54 | 显示全部楼层
发表于 2025-3-23 05:26:00 | 显示全部楼层
Andrey Popoven geistigen Zentren Deutschlands durchzusprechen, durchzuberichten. Das war vor nahezu genau 170 Jahren. Werden aber in unseren Tagen etwa die griechischen Inseln von Erdbeben heimgesucht, so gibt es noch zur selbigen Stunde praktisch keinen Quadratmeter auf unserer Erdoberfläche, auf dem die Nachr
发表于 2025-3-23 08:38:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 11:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表