找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Representations of Finite Groups; Jean-Pierre Serre Textbook 1977 Springer Science+Business Media New York 1977 Darstellung (Math.

[复制链接]
楼主: TOUT
发表于 2025-3-26 21:23:46 | 显示全部楼层
Jean-Pierre Serrecal manifestations of black holes are given.Avoids unnecessa.This book is based on the lecture notes of a one-semester course on black hole astrophysics given  by the author and is aimed at advanced undergraduate and graduate students with an interest in astrophysics. .The material included goes bey
发表于 2025-3-27 03:26:48 | 显示全部楼层
发表于 2025-3-27 05:46:04 | 显示全部楼层
发表于 2025-3-27 12:27:38 | 显示全部楼层
发表于 2025-3-27 16:40:06 | 显示全部楼层
发表于 2025-3-27 21:27:36 | 显示全部楼层
Generalities on linear representations linear mapping of V into V which has an inverse a.; this inverse is linear. When V has a finite basis (.) of n elements, each linear map .: V → V is defined by a square matrix (.) of order .. The coefficients . are complex numbers; they are obtained by expressing the images .(.) in terms of the bas
发表于 2025-3-28 01:57:50 | 显示全部楼层
Induced representations; Mackey’s criterion (cf. 3.3) that the module V (or the representation V) is said to be . by W if we have V = ⊕.W, i.e., if V is a direct sum of the images .W, . E R (a condition which is independent of the choice of R). This property can be reformulated in the following way: Let .be the C[G]-module obtained from W by
发表于 2025-3-28 04:19:53 | 显示全部楼层
发表于 2025-3-28 08:40:49 | 显示全部楼层
Rationality questions: examplesbers, and let .(.) be the field obtained by adjoining the .th roots of unity to .. The Galois group of .(.) over . is the group denoted Γ. in 12.4; it is a subgroup of the group (./.)*. In fact:. (Gauss). . Γ. = (./m.)*.
发表于 2025-3-28 13:03:05 | 显示全部楼层
7楼
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 17:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表