找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Partial Differential Operators; Lars Hörmander Book 19631st edition Springer-Verlag OHG, Berlin · Göttingen · Heidelberg 1963 Finit

[复制链接]
查看: 55357|回复: 47
发表于 2025-3-21 18:00:44 | 显示全部楼层 |阅读模式
书目名称Linear Partial Differential Operators
编辑Lars Hörmander
视频video
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Linear Partial Differential Operators;  Lars Hörmander Book 19631st edition Springer-Verlag OHG, Berlin · Göttingen · Heidelberg 1963 Finit
描述The aim of this book is to give a systematic study of questions con­ cerning existence, uniqueness and regularity of solutions of linear partial differential equations and boundary problems. Let us note explicitly that this program does not contain such topics as eigenfunction expan­ sions, although we do give the main facts concerning differential operators which are required for their study. The restriction to linear equations also means that the trouble of achieving minimal assumptions concerning the smoothness of the coefficients of the differential equations studied would not be worth while; we usually assume that they are infinitely differenti­ able. Functional analysis and distribution theory form the framework for the theory developed here. However, only classical results of functional analysis are used. The terminology employed is that of BOURBAKI. To make the exposition self-contained we present in Chapter I the elements of distribution theory that are required. With the possible exception of section 1.8, this introductory chapter should be bypassed by a reader who is already familiar with distribution theory.
出版日期Book 19631st edition
关键词Finite; Operators; distribution; equation; function; functional analysis; partial differential equation; pa
版次1
doihttps://doi.org/10.1007/978-3-642-46175-0
isbn_softcover978-3-642-46177-4
isbn_ebook978-3-642-46175-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag OHG, Berlin · Göttingen · Heidelberg 1963
The information of publication is updating

书目名称Linear Partial Differential Operators影响因子(影响力)




书目名称Linear Partial Differential Operators影响因子(影响力)学科排名




书目名称Linear Partial Differential Operators网络公开度




书目名称Linear Partial Differential Operators网络公开度学科排名




书目名称Linear Partial Differential Operators被引频次




书目名称Linear Partial Differential Operators被引频次学科排名




书目名称Linear Partial Differential Operators年度引用




书目名称Linear Partial Differential Operators年度引用学科排名




书目名称Linear Partial Differential Operators读者反馈




书目名称Linear Partial Differential Operators读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:12:07 | 显示全部楼层
发表于 2025-3-22 02:00:57 | 显示全部楼层
发表于 2025-3-22 05:59:06 | 显示全部楼层
发表于 2025-3-22 10:36:10 | 显示全部楼层
Linear Partial Differential Operators978-3-642-46175-0Series ISSN 0072-7830 Series E-ISSN 2196-9701
发表于 2025-3-22 15:38:43 | 显示全部楼层
The Cauchy problem (constant coefficients)To solve the Cauchy problem for a differential operator . (.) with data on a plane . = 0, where 0≠., means, roughly speaking, to find a solution . of the equation.where . is given, so that for another given function
发表于 2025-3-22 20:31:49 | 显示全部楼层
https://doi.org/10.1007/978-3-642-46175-0Finite; Operators; distribution; equation; function; functional analysis; partial differential equation; pa
发表于 2025-3-22 23:56:59 | 显示全部楼层
Distribution theoryllowing chapters. The reader may thus consult . [1] for a more detailed study of almost all topics discussed here. An exception is Definition 1.3.3 and the related Theorem 1.7.8, which are based on an idea of . [2] (see also . [3] and . [14]). In section 1.8 we have added a definition of distributio
发表于 2025-3-23 05:19:43 | 显示全部楼层
发表于 2025-3-23 05:55:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 00:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表