找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Linear Integral Equations; Ram P. Kanwal Textbook 1997Latest edition Springer Science+Business Media New York 1997 equations.ksa.mathemati

[复制链接]
查看: 22077|回复: 48
发表于 2025-3-21 18:37:33 | 显示全部楼层 |阅读模式
书目名称Linear Integral Equations
编辑Ram P. Kanwal
视频video
图书封面Titlebook: Linear Integral Equations;  Ram P. Kanwal Textbook 1997Latest edition Springer Science+Business Media New York 1997 equations.ksa.mathemati
描述This second edition of Linear Integral Equations continues the emphasis that the first edition placed on applications. Indeed, many more examples have been added throughout the text. Significant new material has been added in Chapters 6 and 8. For instance, in Chapter 8 we have included the solutions of the Cauchy type integral equations on the real line. Also, there is a section on integral equations with a logarithmic kernel. The bibliography at the end of the book has been exteded and brought up to date. I wish to thank Professor B.K. Sachdeva who has checked the revised man­ uscript and has suggested many improvements. Last but not least, I am grateful to the editor and staff of Birkhauser for inviting me to prepare this new edition and for their support in preparing it for publication. RamP Kanwal CHAYfERl Introduction 1.1. Definition An integral equation is an equation in which an unknown function appears under one or more integral signs Naturally, in such an equation there can occur other terms as well. For example, for a ~ s ~ b; a :( t :( b, the equations (1.1.1) f(s) = ib K(s, t)g(t)dt, g(s) = f(s) + ib K(s, t)g(t)dt, (1.1.2) g(s) = ib K(s, t)[g(t)fdt, (1.1.3) where the f
出版日期Textbook 1997Latest edition
关键词equations; ksa; mathematics; Boundary value problem; Integral; Integral equation; ordinary differential eq
版次2
doihttps://doi.org/10.1007/978-1-4612-0765-8
isbn_softcover978-1-4612-6893-2
isbn_ebook978-1-4612-0765-8
copyrightSpringer Science+Business Media New York 1997
The information of publication is updating

书目名称Linear Integral Equations影响因子(影响力)




书目名称Linear Integral Equations影响因子(影响力)学科排名




书目名称Linear Integral Equations网络公开度




书目名称Linear Integral Equations网络公开度学科排名




书目名称Linear Integral Equations被引频次




书目名称Linear Integral Equations被引频次学科排名




书目名称Linear Integral Equations年度引用




书目名称Linear Integral Equations年度引用学科排名




书目名称Linear Integral Equations读者反馈




书目名称Linear Integral Equations读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:09:51 | 显示全部楼层
Classical Fredholm Theory,tion (4.1.1) when the function .(s) and the kernel .(s, t) are any integrable functions. Furthermore, the present method enables us to get explicit formulas for the solution in terms of certain determinants.
发表于 2025-3-22 03:15:13 | 显示全部楼层
Applications to Partial Differential Equations,quations leads to Volterra integral equations. We confine our attention to the linear partial differential equations of the elliptic type, specifically, to the Laplace, Poisson, and Helmholtz equations wherein lie the most interesting and important achievements of the theory of integral equations.
发表于 2025-3-22 05:19:49 | 显示全部楼层
发表于 2025-3-22 10:38:49 | 显示全部楼层
发表于 2025-3-22 15:28:59 | 显示全部楼层
发表于 2025-3-22 18:51:58 | 显示全部楼层
发表于 2025-3-23 00:47:49 | 显示全部楼层
发表于 2025-3-23 02:25:47 | 显示全部楼层
发表于 2025-3-23 06:24:59 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 02:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表