找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lesion Segmentation in Surgical and Diagnostic Applications; MICCAI 2022 Challeng Yiming Xiao,Guanyu Yang,Shuang Song Conference proceeding

[复制链接]
楼主: 时间
发表于 2025-3-27 00:57:44 | 显示全部楼层
Md Mahfuzur Rahman Siddiquee,Dong Yang,Yufan He,Daguang Xu,Andriy Myronenko
发表于 2025-3-27 01:14:24 | 显示全部楼层
发表于 2025-3-27 06:11:18 | 显示全部楼层
发表于 2025-3-27 10:16:09 | 显示全部楼层
发表于 2025-3-27 17:37:25 | 显示全部楼层
发表于 2025-3-27 21:46:06 | 显示全部楼层
A Segmentation Network Based on 3D U-Net for Automatic Renal Cancer Structure Segmentation in CTA Imved the state-of-the-art, also Dice Similarity Coefficient (DSC) and Average Hausdorff Distance (AVD) of renal artery. According to the results in the KiPA22 challenge, our method have a better segmentation performance in CTA images.
发表于 2025-3-27 23:24:55 | 显示全部楼层
Boundary-Aware Network for Kidney Parsinge are used as attention to enhance the segmentation feature maps. We evaluated the BA-Net on the Kidney PArsing (KiPA) Challenge dataset and achieved an average Dice score of 89.65. for kidney structures segmentation on CTA scans using 4-fold cross-validation. The results demonstrate the effectivene
发表于 2025-3-28 03:34:54 | 显示全部楼层
CANet: Channel Extending and Axial Attention Catching Network for Multi-structure Kidney Segmentatioation. Our solution is founded based on the thriving nn-UNet architecture. Firstly, by extending the channel size, we propose a larger network, which can provide a broader perspective, facilitating the extraction of complex structural information. Secondly, we include an axial attention catching(AAC
发表于 2025-3-28 07:34:42 | 显示全部楼层
Segmentation of Intra-operative Ultrasound Using Self-supervised Learning Based 3D-ResUnet Model witthis encoder as a pre-trained weight for the Intra-operative ultrasound (iUS) segmentation. In the second stage, the pre-trained weighted-based 3DResUNet proposed model was used to train on the training dataset for iUS segmentation. Experiment on CuRIOUS -22 challenge showed that our proposed soluti
发表于 2025-3-28 10:36:38 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 18:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表