找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on the Geometry of Numbers; Carl Ludwig Siegel,Komaravolu Chandrasekharan Book 1989 Springer-Verlag Berlin Heidelberg 1989 Volume

[复制链接]
楼主: 不同
发表于 2025-3-25 06:53:52 | 显示全部楼层
发表于 2025-3-25 09:12:47 | 显示全部楼层
发表于 2025-3-25 13:37:43 | 显示全部楼层
Lecture IIIWe proved in Lecture II that if .. is defined by . then it is an even gauge function on ℝ.. In this section we shall evaluate the integral for the volume .. of the convex body ..defined by . We have
发表于 2025-3-25 17:30:24 | 显示全部楼层
Lecture IVLet . be an even gauge function on ℝ., and . the convex body defined by {.| . (.) < 1}. Let ..,..., .. be the . of ., and let the minima be attained at the vectors ..,..., .., called the .. Another way of looking at this fact is as follows:
发表于 2025-3-25 21:14:13 | 显示全部楼层
发表于 2025-3-26 02:26:20 | 显示全部楼层
Lecture VIThe preceding lecture has shown that in any discrete vector group . of rank r, there exists a basis, that is r linearly independent vectors ..,..., .. ,such that any vector . belonging to . can be written as.where ..,..., .. are integers.
发表于 2025-3-26 04:55:44 | 显示全部楼层
Lecture VIIWe shall use our results about the decomposition of vector groups to discuss the possible number of periods of real and complex functions.
发表于 2025-3-26 10:08:22 | 显示全部楼层
Lecture IXConsider the following . linear forms with real coefficients.where the matrix (a.), ., . = 1,…, ., is non-singular, and let . = |det(a.)|.
发表于 2025-3-26 13:23:27 | 显示全部楼层
Lecture XIn the two previous lectures we have obtained theorems about the minima of quadratic forms on the set of all non-zero integral points. These theorems can be formulated in terms of lattices. For example, the theorem about the minimum of positive-definite binary quadratic forms gives the following result:
发表于 2025-3-26 17:52:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 18:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表