找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Lectures on Algebraic Statistics; Mathias Drton,Bernd Sturmfels,Seth Sullivant Textbook 2009 Birkhäuser Basel 2009 Factor analysis.Grad.Li

[复制链接]
查看: 26222|回复: 37
发表于 2025-3-21 18:50:52 | 显示全部楼层 |阅读模式
书目名称Lectures on Algebraic Statistics
编辑Mathias Drton,Bernd Sturmfels,Seth Sullivant
视频video
概述Exercises and Open Problems complement the material and stimulate further research.Introduces to the rather new field of Algebraic Statistics.Includes supplementary material:
丛书名称Oberwolfach Seminars
图书封面Titlebook: Lectures on Algebraic Statistics;  Mathias Drton,Bernd Sturmfels,Seth Sullivant Textbook 2009 Birkhäuser Basel 2009 Factor analysis.Grad.Li
描述.How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models..
出版日期Textbook 2009
关键词Factor analysis; Grad; Likelihood; Parameter; algebraic geometry; algebraic statistics; statistics
版次1
doihttps://doi.org/10.1007/978-3-7643-8905-5
isbn_softcover978-3-7643-8904-8
isbn_ebook978-3-7643-8905-5Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightBirkhäuser Basel 2009
The information of publication is updating

书目名称Lectures on Algebraic Statistics影响因子(影响力)




书目名称Lectures on Algebraic Statistics影响因子(影响力)学科排名




书目名称Lectures on Algebraic Statistics网络公开度




书目名称Lectures on Algebraic Statistics网络公开度学科排名




书目名称Lectures on Algebraic Statistics被引频次




书目名称Lectures on Algebraic Statistics被引频次学科排名




书目名称Lectures on Algebraic Statistics年度引用




书目名称Lectures on Algebraic Statistics年度引用学科排名




书目名称Lectures on Algebraic Statistics读者反馈




书目名称Lectures on Algebraic Statistics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:57:41 | 显示全部楼层
发表于 2025-3-22 02:57:07 | 显示全部楼层
Hidden Variables,tandard asymptotic theory usually does not apply because of model singularities. For example, we saw in Chapter 2 that the chi-square asymptotics for the likelihood ratio test are typically not valid at a singular point.
发表于 2025-3-22 06:08:26 | 显示全部楼层
发表于 2025-3-22 12:02:30 | 显示全部楼层
发表于 2025-3-22 16:01:27 | 显示全部楼层
Markov Bases,ency tables can be tested in an exact approach by performing random walks on a constrained set of tables with non-negative integer entries. Markov bases are of key importance to this statistical methodology because they comprise moves between tables that ensure that the random walk connects every pair of tables in the considered set.
发表于 2025-3-22 20:03:16 | 显示全部楼层
Bayesian Integrals,aximizing the likelihood function, we now seek to integrate that same function. This chapter aims to show how algebraic methods can be applied to various aspects of this problem. Section 5.1 discusses asymptotics of Bayesian integrals for large sample size, while Section 5.2 concerns exact evaluation of integrals for small sample size.
发表于 2025-3-23 00:31:05 | 显示全部楼层
发表于 2025-3-23 02:18:45 | 显示全部楼层
发表于 2025-3-23 08:56:05 | 显示全部楼层
itself one of the most profound questions ever faced by scie.The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and ou
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 22:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表