找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning with Recurrent Neural Networks; Barbara Hammer Book 2000 Springer-Verlag London 2000 Approximate capability.Folding networks.Lear

[复制链接]
查看: 9464|回复: 35
发表于 2025-3-21 16:07:23 | 显示全部楼层 |阅读模式
书目名称Learning with Recurrent Neural Networks
编辑Barbara Hammer
视频video
概述The book details a new approach which enables neural networks to deal with symbolic data, folding networks.It presents both practical applications and a precise theoretical foundation
丛书名称Lecture Notes in Control and Information Sciences
图书封面Titlebook: Learning with Recurrent Neural Networks;  Barbara Hammer Book 2000 Springer-Verlag London 2000 Approximate capability.Folding networks.Lear
描述Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a theoretical foundation, proving that the approach is appropriate as a learning mechanism in principle, is presented: Their universal approximation ability is investigated- including several new results for standard recurrent neural networks such as explicit bounds on the required number of neurons and the super Turing capability of sigmoidal recurrent networks. The information theoretical learnability is examined - including several contribution to distribution dependent learnability, an answer to an open question posed by Vidyasagar, and a generalisation of the recent luckiness framework to function classes. Finally, the complexity of training is considered - including new results on the loading problem for standard feedforward networks with an arbitrary multilayered architecture, a correlated number of neurons and training set size, a varying number of hidden neurons but fixed input di
出版日期Book 2000
关键词Approximate capability; Folding networks; Learnability; artificial intelligence; artificial neural netwo
版次1
doihttps://doi.org/10.1007/BFb0110016
isbn_softcover978-1-85233-343-0
isbn_ebook978-1-84628-567-7Series ISSN 0170-8643 Series E-ISSN 1610-7411
issn_series 0170-8643
copyrightSpringer-Verlag London 2000
The information of publication is updating

书目名称Learning with Recurrent Neural Networks影响因子(影响力)




书目名称Learning with Recurrent Neural Networks影响因子(影响力)学科排名




书目名称Learning with Recurrent Neural Networks网络公开度




书目名称Learning with Recurrent Neural Networks网络公开度学科排名




书目名称Learning with Recurrent Neural Networks被引频次




书目名称Learning with Recurrent Neural Networks被引频次学科排名




书目名称Learning with Recurrent Neural Networks年度引用




书目名称Learning with Recurrent Neural Networks年度引用学科排名




书目名称Learning with Recurrent Neural Networks读者反馈




书目名称Learning with Recurrent Neural Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:05:39 | 显示全部楼层
Lecture Notes in Control and Information Scienceshttp://image.papertrans.cn/l/image/583032.jpg
发表于 2025-3-22 01:39:46 | 显示全部楼层
发表于 2025-3-22 04:40:39 | 显示全部楼层
Learning with Recurrent Neural Networks978-1-84628-567-7Series ISSN 0170-8643 Series E-ISSN 1610-7411
发表于 2025-3-22 11:44:22 | 显示全部楼层
发表于 2025-3-22 13:28:45 | 显示全部楼层
发表于 2025-3-22 18:19:54 | 显示全部楼层
发表于 2025-3-22 23:29:11 | 显示全部楼层
发表于 2025-3-23 04:25:46 | 显示全部楼层
发表于 2025-3-23 08:53:20 | 显示全部楼层
Barbara Hammermittelfristigen Auswirkungen dieser Veränderungen auf Mitarbeiter und Führungskräfte dar..Die Stiftung der Schweizerischen Gesellschaft für Organisation und Management SGO sowie die Hochschule für Soziale Arbeit der Fachhochschule Nordwestschweiz unterstützten diesen Tagungsband..978-3-658-18786-6Series ISSN 2626-0581 Series E-ISSN 2626-059X
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 19:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表