找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning and Intelligent Optimization; 9th International Co Clarisse Dhaenens,Laetitia Jourdan,Marie-Eléonore Conference proceedings 2015

[复制链接]
查看: 48885|回复: 63
发表于 2025-3-21 17:57:55 | 显示全部楼层 |阅读模式
书目名称Learning and Intelligent Optimization
副标题9th International Co
编辑Clarisse Dhaenens,Laetitia Jourdan,Marie-Eléonore
视频videohttp://file.papertrans.cn/583/582896/582896.mp4
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Learning and Intelligent Optimization; 9th International Co Clarisse Dhaenens,Laetitia Jourdan,Marie-Eléonore  Conference proceedings 2015
描述.This book constitutes the thoroughly refereed post-conference proceedings of the 9th International Conference on Learning and Optimization, LION 9, which was held in Lille, France, in January 2015..The 31 contributions presented were carefully reviewed and selected for inclusion in this book. The papers address all fields between machine learning, artificial intelligence, mathematical programming and algorithms for hard optimization problems. Special focus is given to algorithm selection and configuration, learning, fitness landscape, applications, dynamic optimization, multi-objective, max-clique problems, bayesian optimization and global optimization, data mining and - in a special session - also on dynamic optimization..
出版日期Conference proceedings 2015
关键词Algorithm construction; Answer set programming; Bio-inspired approaches; Bio-inspired optimization; Clas
版次1
doihttps://doi.org/10.1007/978-3-319-19084-6
isbn_softcover978-3-319-19083-9
isbn_ebook978-3-319-19084-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing Switzerland 2015
The information of publication is updating

书目名称Learning and Intelligent Optimization影响因子(影响力)




书目名称Learning and Intelligent Optimization影响因子(影响力)学科排名




书目名称Learning and Intelligent Optimization网络公开度




书目名称Learning and Intelligent Optimization网络公开度学科排名




书目名称Learning and Intelligent Optimization被引频次




书目名称Learning and Intelligent Optimization被引频次学科排名




书目名称Learning and Intelligent Optimization年度引用




书目名称Learning and Intelligent Optimization年度引用学科排名




书目名称Learning and Intelligent Optimization读者反馈




书目名称Learning and Intelligent Optimization读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:53:28 | 显示全部楼层
发表于 2025-3-22 03:34:10 | 显示全部楼层
发表于 2025-3-22 06:47:31 | 显示全部楼层
发表于 2025-3-22 11:17:37 | 显示全部楼层
,Dynamic Service Selection with Optimal Stopping and ‘Trivial Choice’,Two different strategies for searching a best-available service in adaptive, open software systems are simulated. The practical advantage of the theoretically optimal strategy is confirmed over a ‘trivial choice’ approach, however the advantage was only small in the simulation.
发表于 2025-3-22 16:20:14 | 显示全部楼层
发表于 2025-3-22 19:58:09 | 显示全部楼层
https://doi.org/10.1007/978-3-319-19084-6Algorithm construction; Answer set programming; Bio-inspired approaches; Bio-inspired optimization; Clas
发表于 2025-3-22 23:35:45 | 显示全部楼层
Learning a Hidden Markov Model-Based Hyper-heuristic,ng useful mutation heuristics. Empirical evidence supports this on the ., ., . and . problems. A new approach to hyper-heuristics is proposed that addresses this problem by modeling and learning hyper-heuristics by means of a hidden Markov Model. Experiments show that this is a feasible and promising approach.
发表于 2025-3-23 03:52:28 | 显示全部楼层
Exploring Non-neutral Landscapes with Neutrality-Based Local Search,tion. Some experiments on NK landscapes show that an adaptive discretization is useful to reach high local optima and to launch diversifications automatically. We believe that a hill-climbing using such an adaptive evaluation function could be more appropriated than a classical iterated local search mechanism.
发表于 2025-3-23 06:32:24 | 显示全部楼层
A Biased Random-Key Genetic Algorithm for the Multiple Knapsack Assignment Problem,em. The MKAP is a hard problem even for small-sized instances. In this paper, we propose an approximate approach for the MKAP based on a biased random key genetic algorithm. Our solution approach exhibits competitive performance when compared to the best approximate approach reported in the literature.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-14 02:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表