找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning Theory and Kernel Machines; 16th Annual Conferen Bernhard Schölkopf,Manfred K. Warmuth Conference proceedings 2003 Springer-Verlag

[复制链接]
查看: 28075|回复: 36
发表于 2025-3-21 18:26:07 | 显示全部楼层 |阅读模式
书目名称Learning Theory and Kernel Machines
副标题16th Annual Conferen
编辑Bernhard Schölkopf,Manfred K. Warmuth
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Learning Theory and Kernel Machines; 16th Annual Conferen Bernhard Schölkopf,Manfred K. Warmuth Conference proceedings 2003 Springer-Verlag
出版日期Conference proceedings 2003
关键词Algorithmic Learning; Boosting; Game Theory; Inductive Inference; Kernel Methods; Learning Classifier Sys
版次1
doihttps://doi.org/10.1007/b12006
isbn_softcover978-3-540-40720-1
isbn_ebook978-3-540-45167-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2003
The information of publication is updating

书目名称Learning Theory and Kernel Machines影响因子(影响力)




书目名称Learning Theory and Kernel Machines影响因子(影响力)学科排名




书目名称Learning Theory and Kernel Machines网络公开度




书目名称Learning Theory and Kernel Machines网络公开度学科排名




书目名称Learning Theory and Kernel Machines被引频次




书目名称Learning Theory and Kernel Machines被引频次学科排名




书目名称Learning Theory and Kernel Machines年度引用




书目名称Learning Theory and Kernel Machines年度引用学科排名




书目名称Learning Theory and Kernel Machines读者反馈




书目名称Learning Theory and Kernel Machines读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:46:26 | 显示全部楼层
发表于 2025-3-22 02:53:01 | 显示全部楼层
Sparse Kernel Partial Least Squares Regressionrithm. The resulting .-KPLS algorithm explicitly models centering and bias rather than using kernel centering. An .-insensitive loss function is used to produce sparse solutions in the dual space. The final regression function for the .-KPLS algorithm only requires a relatively small set of support vectors.
发表于 2025-3-22 06:28:59 | 显示全部楼层
发表于 2025-3-22 12:23:58 | 显示全部楼层
发表于 2025-3-22 14:09:58 | 显示全部楼层
Multiplicative Updates for Large Margin Classifierstiplicative updates used in machine learning. In this paper, we provide complete proofs of convergence for these updates and extend previous work to incorporate sum and box constraints in addition to nonnegativity.
发表于 2025-3-22 19:05:45 | 显示全部楼层
发表于 2025-3-22 22:57:55 | 显示全部楼层
发表于 2025-3-23 02:03:02 | 显示全部楼层
发表于 2025-3-23 07:05:53 | 显示全部楼层
Simplified PAC-Bayesian Margin Boundsit-norm feature vectors. Unit-norm margin bounds have been proved previously using fat-shattering arguments and Rademacher complexity. Recently Langford and Shawe-Taylor proved a dimension-independent unit-norm margin bound using a relatively simple PAC-Bayesian argument. Unfortunately, the Langford
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 12:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表