找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning Systems; Eduard Aved’yan,J. Mason,P. C. Parks Book 1995 Springer-Verlag London Limited 1995 Adaptive control.algorithms.artificia

[复制链接]
查看: 34227|回复: 42
发表于 2025-3-21 16:29:09 | 显示全部楼层 |阅读模式
书目名称Learning Systems
编辑Eduard Aved’yan,J. Mason,P. C. Parks
视频video
图书封面Titlebook: Learning Systems;  Eduard Aved’yan,J. Mason,P. C. Parks Book 1995 Springer-Verlag London Limited 1995 Adaptive control.algorithms.artificia
描述A learning system can be defined as a system which can adapt its behaviour to become more effective at a particular task or set of tasks. It consists of an architecture with a set of variable parameters and an algorithm. Learning systems are useful in many fields, one of the major areas being in control and system identification. This work covers major aspects of learning systems: system architecture, choice of performance index and methods measuring error. Major learning algorithms are explained, including proofs of convergence. Artificial neural networks, which are an important class of learning systems and have been subject to rapidly increasing popularity, are discussed. Where appropriate, examples have been given to demonstrate the practical use of techniques developed in the text. System identification and control using multi-layer networks and CMAC (Cerebellar Model Articulation Controller) are also presented.
出版日期Book 1995
关键词Adaptive control; algorithms; artificial neural network; artificial neural networks; behavior; control; co
版次1
doihttps://doi.org/10.1007/978-1-4471-3089-5
isbn_softcover978-3-540-19996-0
isbn_ebook978-1-4471-3089-5
copyrightSpringer-Verlag London Limited 1995
The information of publication is updating

书目名称Learning Systems影响因子(影响力)




书目名称Learning Systems影响因子(影响力)学科排名




书目名称Learning Systems网络公开度




书目名称Learning Systems网络公开度学科排名




书目名称Learning Systems被引频次




书目名称Learning Systems被引频次学科排名




书目名称Learning Systems年度引用




书目名称Learning Systems年度引用学科排名




书目名称Learning Systems读者反馈




书目名称Learning Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:20:58 | 显示全部楼层
978-3-540-19996-0Springer-Verlag London Limited 1995
发表于 2025-3-22 01:13:44 | 显示全部楼层
Deterministic Algorithms,e the teacher’s behaviour. This can achieved by means of construction of a model of the teacher’s instructions. The more we know about the teacher’s behaviour the better the possible quality of the learning system.
发表于 2025-3-22 07:33:12 | 显示全部楼层
Stochastic Algorithms,) takes the form . where σξ.(.) plays the role of weights in the sum (5.1). The estimate .(.) that provides the minimum for function (5.1) satisfies the equation . and the estimate .(.), obviously, satisfies the equation ..
发表于 2025-3-22 10:09:02 | 显示全部楼层
Multilayer Neural Networks,mory, and learning algorithms. Being designed according to the principles of their biological analogues, multilayer neural networks (MNN) are able to solve a wide range of problems in pattern recognition [1], identification [2], control of complex dynamical non-linear systems [3], [4], robot control [5], etc.
发表于 2025-3-22 15:15:50 | 显示全部楼层
Identification and Control of Dynamic Systems Using Multilayer Neural Networks,ant is assumed to have known parameterisation but with unknown values of the parameters. The objective is to construct a suitable identification model .. which produces an output .. (.) close to .. (.) in some sense, when subjected to the same input ..(.) as the plant.
发表于 2025-3-22 20:36:06 | 显示全部楼层
发表于 2025-3-23 00:45:50 | 显示全部楼层
发表于 2025-3-23 03:11:43 | 显示全部楼层
Deterministic and Stochastic Algorithms of Optimisation,In the first part of the chapter we shall assume that the teacher’s behaviour is described by a non-linear function and the learning model is also chosen as a non-linear function.
发表于 2025-3-23 05:40:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 02:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表