找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Learning Classifier Systems; International Worksh Tim Kovacs,Xavier Llorà,Stewart W. Wilson Conference proceedings 2007 Springer-Verlag Ber

[复制链接]
查看: 32651|回复: 65
发表于 2025-3-21 17:30:39 | 显示全部楼层 |阅读模式
书目名称Learning Classifier Systems
副标题International Worksh
编辑Tim Kovacs,Xavier Llorà,Stewart W. Wilson
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Learning Classifier Systems; International Worksh Tim Kovacs,Xavier Llorà,Stewart W. Wilson Conference proceedings 2007 Springer-Verlag Ber
描述The work embodied in this volume was presented across three consecutive e- tions of the International Workshop on Learning Classi?er Systems that took place in Chicago (2003), Seattle (2004), and Washington (2005). The Genetic and Evolutionary Computation Conference, the main ACM SIGEvo conference, hosted these three editions. The topics presented in this volume summarize the wide spectrum of interests of the Learning Classi?er Systems (LCS) community. The topics range from theoretical analysis of mechanisms to practical cons- eration for successful application of such techniques to everyday data-mining tasks. When we started editing this volume, we faced the choice of organizing the contents in a purely chronologicalfashion or as a sequence of related topics that help walk the reader across the di?erent areas. In the end we decided to or- nize the contents by area, breaking the time-line a little. This is not a simple endeavor as we can organize the material using multiple criteria. The tax- omy below is our humble e?ort to provide a coherent grouping. Needless to say, some works may fall in more than one category. The four areas are as follows: Knowledge representation. These cha
出版日期Conference proceedings 2007
关键词Fuzzy; adaptive exploration rate; algorithmic learning; algorithms; complexity; constraints; data mining; d
版次1
doihttps://doi.org/10.1007/978-3-540-71231-2
isbn_softcover978-3-540-71230-5
isbn_ebook978-3-540-71231-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

书目名称Learning Classifier Systems影响因子(影响力)




书目名称Learning Classifier Systems影响因子(影响力)学科排名




书目名称Learning Classifier Systems网络公开度




书目名称Learning Classifier Systems网络公开度学科排名




书目名称Learning Classifier Systems被引频次




书目名称Learning Classifier Systems被引频次学科排名




书目名称Learning Classifier Systems年度引用




书目名称Learning Classifier Systems年度引用学科排名




书目名称Learning Classifier Systems读者反馈




书目名称Learning Classifier Systems读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:30:04 | 显示全部楼层
发表于 2025-3-22 03:08:14 | 显示全部楼层
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/l/image/582707.jpg
发表于 2025-3-22 07:30:57 | 显示全部楼层
Use of Learning Classifier System for Inferring Natural Language Grammar the grammar of a given natural language from an exemplary set of correct and incorrect sentences. A genetic algorithm used periodically strengthens LCS’s operation. A context-free grammar is used in the description of language structure.
发表于 2025-3-22 09:19:52 | 显示全部楼层
A Fuzzy System to Control Exploration Rate in XCSCS. In this paper, an intelligent method is proposed to control the exploration rate in XCS to improve its long-term performance. This method is called Intelligent Exploration Method (IEM) and is applied to some benchmark problems to show advantages of adaptive exploration rate for XCS.
发表于 2025-3-22 15:35:30 | 显示全部楼层
发表于 2025-3-22 19:21:12 | 显示全部楼层
Data Mining in Learning Classifier Systems: Comparing XCS with GAssist shows that both systems are suitable for datamining but have different advantages and disadvantages. The study does not only reveal important differences between the two systems but also suggests several structural properties of the underlying datasets.
发表于 2025-3-22 22:04:54 | 显示全部楼层
https://doi.org/10.1007/978-3-540-71231-2Fuzzy; adaptive exploration rate; algorithmic learning; algorithms; complexity; constraints; data mining; d
发表于 2025-3-23 03:23:59 | 显示全部楼层
发表于 2025-3-23 06:58:33 | 显示全部楼层
Conference proceedings 2007e a little. This is not a simple endeavor as we can organize the material using multiple criteria. The tax- omy below is our humble e?ort to provide a coherent grouping. Needless to say, some works may fall in more than one category. The four areas are as follows: Knowledge representation. These cha
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 06:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表