找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: LATIN 2002: Theoretical Informatics; 5th Latin American S Sergio Rajsbaum Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 200

[复制链接]
楼主: lumbar-puncture
发表于 2025-3-28 17:07:28 | 显示全部楼层
发表于 2025-3-28 21:01:53 | 显示全部楼层
发表于 2025-3-29 00:42:32 | 显示全部楼层
Beta-Expansions for Cubic Pisot Numbersℕ a < β ., called the beta-shift. This dynamical system is characterized by the beta-expansion of 1; in particular, it is of finite type if and only if ..(1) is finite; β is then called a simple beta-number..We first compute the beta-expansion of 1 for any cubic Pisot number. Next we show that cubic simple beta-numbers are Pisot numbers.
发表于 2025-3-29 05:51:16 | 显示全部楼层
A Deterministic Polynomial Time Algorithm for Heilbronn’s Problem in Dimension Threethe unit square [0, 1]. where all triangles have area at least ω(log ./..). Here we will consider a 3-dimensional analogue of this problem and we will give a deterministic polynomial time algorithm which finds . points in the unit cube [0, 1]. such that the volume of every tetrahedron among these . points is at least ω(log ./..).
发表于 2025-3-29 08:39:30 | 显示全部楼层
发表于 2025-3-29 14:26:08 | 显示全部楼层
Testing and Checking of Finite State Systemsite state achines. Conformance testing of deter inistic achines has been investigated for a long time; we will discuss various efficient ethods. Testing of nondeter inistic and probabilistic achines is related to games with incomplete infor ation and to partially observable Markov decisions processes.
发表于 2025-3-29 17:29:02 | 显示全部楼层
发表于 2025-3-29 21:19:27 | 显示全部楼层
发表于 2025-3-30 00:18:53 | 显示全部楼层
发表于 2025-3-30 04:46:47 | 显示全部楼层
Algorithms for Local Alignment with Length Constraints*ger Δ. The algorithm runs in time . (.Δ) using . (.Δ) space. We also introduce the . problem and show how our idea can be applied to this case as well. This is a dual approach to the well-known cyclic edit distance problem.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 04:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表