找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: LATIN 2002: Theoretical Informatics; 5th Latin American S Sergio Rajsbaum Conference proceedings 2002 Springer-Verlag Berlin Heidelberg 200

[复制链接]
楼主: lumbar-puncture
发表于 2025-3-28 17:07:28 | 显示全部楼层
发表于 2025-3-28 21:01:53 | 显示全部楼层
发表于 2025-3-29 00:42:32 | 显示全部楼层
Beta-Expansions for Cubic Pisot Numbersℕ a < β ., called the beta-shift. This dynamical system is characterized by the beta-expansion of 1; in particular, it is of finite type if and only if ..(1) is finite; β is then called a simple beta-number..We first compute the beta-expansion of 1 for any cubic Pisot number. Next we show that cubic simple beta-numbers are Pisot numbers.
发表于 2025-3-29 05:51:16 | 显示全部楼层
A Deterministic Polynomial Time Algorithm for Heilbronn’s Problem in Dimension Threethe unit square [0, 1]. where all triangles have area at least ω(log ./..). Here we will consider a 3-dimensional analogue of this problem and we will give a deterministic polynomial time algorithm which finds . points in the unit cube [0, 1]. such that the volume of every tetrahedron among these . points is at least ω(log ./..).
发表于 2025-3-29 08:39:30 | 显示全部楼层
发表于 2025-3-29 14:26:08 | 显示全部楼层
Testing and Checking of Finite State Systemsite state achines. Conformance testing of deter inistic achines has been investigated for a long time; we will discuss various efficient ethods. Testing of nondeter inistic and probabilistic achines is related to games with incomplete infor ation and to partially observable Markov decisions processes.
发表于 2025-3-29 17:29:02 | 显示全部楼层
发表于 2025-3-29 21:19:27 | 显示全部楼层
发表于 2025-3-30 00:18:53 | 显示全部楼层
发表于 2025-3-30 04:46:47 | 显示全部楼层
Algorithms for Local Alignment with Length Constraints*ger Δ. The algorithm runs in time . (.Δ) using . (.Δ) space. We also introduce the . problem and show how our idea can be applied to this case as well. This is a dual approach to the well-known cyclic edit distance problem.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 06:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表