找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Kernel Learning Algorithms for Face Recognition; Jun-Bao Li,Shu-Chuan Chu,Jeng-Shyang Pan Book 2014 Springer Science+Business Media New Yo

[复制链接]
楼主: 贪求
发表于 2025-3-25 05:41:01 | 显示全部楼层
Kernel Learning Foundation,el methods are algorithms that, by replacing the inner product with an appropriate positive definite function, implicitly perform a nonlinear mapping of the input data to a high-dimensional feature space.
发表于 2025-3-25 09:17:26 | 显示全部楼层
Kernel Discriminant Analysis Based Face Recognition,essful in a lot of real-world applications. LDA works well in some cases, but it fails to capture a nonlinear relationship with a linear mapping. In order to overcome this weakness of LDA, the kernel trick is used to represent the complicated nonlinear relationships of input data to develop kernel discriminant analysis (KDA) algorithm.
发表于 2025-3-25 15:21:57 | 显示全部楼层
Kernel Manifold Learning-Based Face Recognition,n aims to develop a meaningful low-dimensional subspace in a high-dimensional input space such as PCA and LDA. LDA is to find the optimal projection matrix with Fisher criterion through considering the class labels, and PCA seeks to minimize the mean square error criterion.
发表于 2025-3-25 17:37:44 | 显示全部楼层
发表于 2025-3-25 23:08:20 | 显示全部楼层
发表于 2025-3-26 03:07:20 | 显示全部楼层
978-1-4939-5212-0Springer Science+Business Media New York 2014
发表于 2025-3-26 05:29:52 | 显示全部楼层
Jun-Bao Li,Shu-Chuan Chu,Jeng-Shyang PanDiscusses the system framework of kernel based face recognition.Introduces a new method of machine learning as it relates to face recognition.Presents algorithms for pattern recognition and machine le
发表于 2025-3-26 09:44:52 | 显示全部楼层
http://image.papertrans.cn/k/image/542449.jpg
发表于 2025-3-26 12:37:04 | 显示全部楼层
发表于 2025-3-26 17:02:20 | 显示全部楼层
Kernel-Optimization-Based Face Recognition,Feature extraction is an important step and essential process in many data analysis areas, such as face recognition, handwriting recognition, human facial expression analysis, speech recognition.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-10 23:41
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表