找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Galois Theory; David Hernandez,Yves Laszlo Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
查看: 37887|回复: 51
发表于 2025-3-21 18:00:13 | 显示全部楼层 |阅读模式
书目名称Introduction to Galois Theory
编辑David Hernandez,Yves Laszlo
视频videohttp://file.papertrans.cn/477/476479/476479.mp4
概述Concise, yet highly motivated introduction.Introduces modern methods such as reduction modulo primes.Includes numerous reviews exercises with solutions
丛书名称Springer Undergraduate Mathematics Series
图书封面Titlebook: Introduction to Galois Theory;  David Hernandez,Yves Laszlo Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive
描述.This textbook provides an undergraduate introduction to Galois theory and its most notable applications...Galois theory was born in the 19th century to study polynomial equations. Both powerful and elegant, this theory was at the origin of a substantial part of modern algebra and has since undergone considerable development. It remains an extremely active research subject and has found numerous applications beyond pure mathematics. In this book, the authors introduce Galois theory from a contemporary point of view. In particular, modern methods such as reduction modulo prime numbers and finite fields are introduced and put to use. Beyond the usual applications of ruler and compass constructions and solvability by radicals, the book also includes topics such as the transcendence of .e. and π, the inverse Galois problem, and infinite Galois theory...Based on courses of the authors at the École Polytechnique, the book is aimed at students with a standard undergraduate background in (mostly linear) algebra. It includes a collection of exam questions in the form of review exercises, with detailed solutions..
出版日期Textbook 2024
关键词textbook on Galois theory; ruler and compass constructions; ring theory; field extensions; finite fields
版次1
doihttps://doi.org/10.1007/978-3-031-66182-2
isbn_softcover978-3-031-66181-5
isbn_ebook978-3-031-66182-2Series ISSN 1615-2085 Series E-ISSN 2197-4144
issn_series 1615-2085
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Introduction to Galois Theory影响因子(影响力)




书目名称Introduction to Galois Theory影响因子(影响力)学科排名




书目名称Introduction to Galois Theory网络公开度




书目名称Introduction to Galois Theory网络公开度学科排名




书目名称Introduction to Galois Theory被引频次




书目名称Introduction to Galois Theory被引频次学科排名




书目名称Introduction to Galois Theory年度引用




书目名称Introduction to Galois Theory年度引用学科排名




书目名称Introduction to Galois Theory读者反馈




书目名称Introduction to Galois Theory读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:49:51 | 显示全部楼层
Introduction to Galois Theory978-3-031-66182-2Series ISSN 1615-2085 Series E-ISSN 2197-4144
发表于 2025-3-22 03:59:38 | 显示全部楼层
发表于 2025-3-22 08:17:31 | 显示全部楼层
发表于 2025-3-22 10:38:31 | 显示全部楼层
Basic Concepts of Group Theory,In this chapter, we recall important elements of group theory that will be useful later on.
发表于 2025-3-22 16:20:20 | 显示全部楼层
Basic Concepts of Ring Theory,As in the previous chapter, we recall here some important elements of ring theory.
发表于 2025-3-22 19:22:35 | 显示全部楼层
Basic Concepts of Algebras Over a Field,Algebras and field extensions play a crucial role in Galois theory. In this chapter, we study the definitions and general properties of these structures.
发表于 2025-3-22 23:00:53 | 显示全部楼层
Finite Fields and Perfect Fields,The framework chosen in this book is that of perfect fields, which we study in this chapter. We first introduce finite fields, which are fundamental examples of perfect fields.
发表于 2025-3-23 02:59:12 | 显示全部楼层
The Galois Correspondence,In this chapter, we prove the main theorem of Galois theory: the Galois correspondence.
发表于 2025-3-23 08:14:47 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-17 22:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表