找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Transfer Learning; Algorithms and Pract Jindong Wang,Yiqiang Chen Book 2023 The Editor(s) (if applicable) and The Author(s)

[复制链接]
查看: 22256|回复: 51
发表于 2025-3-21 16:46:27 | 显示全部楼层 |阅读模式
书目名称Introduction to Transfer Learning
副标题Algorithms and Pract
编辑Jindong Wang,Yiqiang Chen
视频video
概述Fast and painless icebreaker for your journey into transfer learning.Clear summaries of both classic and more recent algorithms.Complementary source codes for good practice examples
丛书名称Machine Learning: Foundations, Methodologies, and Applications
图书封面Titlebook: Introduction to Transfer Learning; Algorithms and Pract Jindong Wang,Yiqiang Chen Book 2023 The Editor(s) (if applicable) and The Author(s)
描述.Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning... This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a “student’s” perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice..
出版日期Book 2023
关键词Transfer learning; Domain adaption; Domain generalization; Meta-learning; Transfer of learning; Knowledge
版次1
doihttps://doi.org/10.1007/978-981-19-7584-4
isbn_softcover978-981-19-7586-8
isbn_ebook978-981-19-7584-4Series ISSN 2730-9908 Series E-ISSN 2730-9916
issn_series 2730-9908
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Introduction to Transfer Learning影响因子(影响力)




书目名称Introduction to Transfer Learning影响因子(影响力)学科排名




书目名称Introduction to Transfer Learning网络公开度




书目名称Introduction to Transfer Learning网络公开度学科排名




书目名称Introduction to Transfer Learning被引频次




书目名称Introduction to Transfer Learning被引频次学科排名




书目名称Introduction to Transfer Learning年度引用




书目名称Introduction to Transfer Learning年度引用学科排名




书目名称Introduction to Transfer Learning读者反馈




书目名称Introduction to Transfer Learning读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:28:18 | 显示全部楼层
发表于 2025-3-22 03:30:20 | 显示全部楼层
发表于 2025-3-22 05:41:27 | 显示全部楼层
Transfer Learning for Computer Vision” example of deep learning tutorial is MNIST digits classification and the ImageNet challenge has dramatically boosted the rapid of deep learning. To now, ImageNet is still the common benchmark in many areas.
发表于 2025-3-22 09:58:21 | 显示全部楼层
Transfer Learning for Natural Language Processing role in common NLP tasks. In this chapter, we show how to perform fine-tuning using the pre-trained language model on a sentence classification task. To save space, we will only introduce the important code snippets in this chapter. For complete code, please refer to the link: ..
发表于 2025-3-22 14:36:59 | 显示全部楼层
发表于 2025-3-22 20:07:32 | 显示全部楼层
Machine Learning: Foundations, Methodologies, and Applicationshttp://image.papertrans.cn/i/image/474290.jpg
发表于 2025-3-22 23:13:47 | 显示全部楼层
https://doi.org/10.1007/978-981-19-7584-4Transfer learning; Domain adaption; Domain generalization; Meta-learning; Transfer of learning; Knowledge
发表于 2025-3-23 02:16:26 | 显示全部楼层
发表于 2025-3-23 07:24:27 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:27
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表