找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Introduction to Data Science; A Python Approach to Laura Igual,Santi Seguí Textbook 2024Latest edition The Editor(s) (if applicable) and Th

[复制链接]
查看: 22842|回复: 49
发表于 2025-3-21 18:09:45 | 显示全部楼层 |阅读模式
书目名称Introduction to Data Science
副标题A Python Approach to
编辑Laura Igual,Santi Seguí
视频video
概述Describes tools and techniques that demystify data science.Discusses Python extensions, techniques and modules to perform statistical analysis and machine learning.Includes case studies, and supplies
丛书名称Undergraduate Topics in Computer Science
图书封面Titlebook: Introduction to Data Science; A Python Approach to Laura Igual,Santi Seguí Textbook 2024Latest edition The Editor(s) (if applicable) and Th
描述.This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. .Topics and features:. .Provides numerous practical case studies using real-world data throughout the book .Supports understanding through hands-on experience of solving data science problems using Python .Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science.Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data .Provides supplementary code resources and data at an associated website .This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical discipli
出版日期Textbook 2024Latest edition
关键词Data Science; Parallel Computing; Python Programming; Statistical Inference; Graph Analysis
版次2
doihttps://doi.org/10.1007/978-3-031-48956-3
isbn_softcover978-3-031-48955-6
isbn_ebook978-3-031-48956-3Series ISSN 1863-7310 Series E-ISSN 2197-1781
issn_series 1863-7310
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Introduction to Data Science影响因子(影响力)




书目名称Introduction to Data Science影响因子(影响力)学科排名




书目名称Introduction to Data Science网络公开度




书目名称Introduction to Data Science网络公开度学科排名




书目名称Introduction to Data Science被引频次




书目名称Introduction to Data Science被引频次学科排名




书目名称Introduction to Data Science年度引用




书目名称Introduction to Data Science年度引用学科排名




书目名称Introduction to Data Science读者反馈




书目名称Introduction to Data Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:16:00 | 显示全部楼层
发表于 2025-3-22 04:08:20 | 显示全部楼层
发表于 2025-3-22 08:02:22 | 显示全部楼层
发表于 2025-3-22 09:02:15 | 显示全部楼层
1863-7310 is and machine learning.Includes case studies, and supplies .This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible dat
发表于 2025-3-22 13:02:31 | 显示全部楼层
,Introduction to Data Science,, enabling their widespread use and the fast dissemination of results. This book has been designed as a small contribution to this democratization process by showing that anyone interested in this topic can become a junior data scientist in a few weeks.
发表于 2025-3-22 20:41:20 | 显示全部楼层
发表于 2025-3-23 00:18:13 | 显示全部楼层
Recommender Systems,amily to travel to? These are typical questions that companies like Netflix or Amazon include in their products. We also see and discuss how recommender systems should be evaluated. Finally, a practical case with MovieLens dataset is presented.
发表于 2025-3-23 03:18:09 | 显示全部楼层
Supervised Learning,tion will then allow us to develop a strategy for model selection. Finally, two of the best-known techniques in machine learning are introduced: support vector machines and random forests. These are then applied to the proposed problem of predicting those loans that will not be successfully covered once they have been accepted.
发表于 2025-3-23 07:21:47 | 显示全部楼层
Network Analysis,t and answering a set of questions. For instance: Which is the most representative member of the network in terms of the most “connected”, the most “circulated”, the “closest” or the most “accessible” to the rest of the members?
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 06:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表