找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Intelligent Computing; Proceedings of the 2 Kohei Arai Conference proceedings 2022 The Editor(s) (if applicable) and The Author(s), under e

[复制链接]
楼主: Flexible
发表于 2025-3-28 15:30:18 | 显示全部楼层
Huber Nieto-Chaupisstorischen Polizeiforschung, der Polizeisoziologie, der empirisch-wissenssoziologischen und der politikwissenschaftlichen Polizeiforschung vorgestellt und auf t978-3-663-09757-0978-3-663-09756-3Series ISSN 2627-7425 Series E-ISSN 2627-7433
发表于 2025-3-28 20:30:08 | 显示全部楼层
,A Stochastic Modified Limited Memory BFGS for Training Deep Neural Networks,f the curvature of the Hessian. In our experiments, both quasi-Newton updates exhibit comparable performances. Our results show that with a fixed computational time budget the proposed quasi-Newton methods provide comparable or better testing accuracy than the state of the art first-order Adam optim
发表于 2025-3-29 01:34:42 | 显示全部楼层
Enhanced Deep Learning Framework for Fine-Grained Segmentation of Fashion and Apparel,ion and fusion modules. The low-level feature data are extracted by the feature extraction module using Mask Region Convolutional Neural Network (RCNN) segmentation branches and Inception V3 used to extract the high-level semantic data. In contrast, the feature fusion module fuses the two types of i
发表于 2025-3-29 05:25:18 | 显示全部楼层
,Deep Convolutional Neural Networks for COVID-19 Detection from Chest X-Ray Images Using ResNetV2,ay images to maximize the performance of this task. This study performs fine-tuning of ResNetV2 networks (specifically, ResNet101V2), which is performed in two main stages: firstly, training model with frozen ResNetV2 base layers, and secondly, unfreezing some layers of the ResNetV2 and retraining w
发表于 2025-3-29 11:01:14 | 显示全部楼层
,Deep Neural Networks for Remote Sensing Image Classification,ontext of the RPASInAir project which aims to enable innovative services with the purpose of land monitoring through the employment of data collected by Remotely Piloted Aircraft Systems (RPAS). A comparison of the performance of different CNNs will be shown and results will be given in terms of mod
发表于 2025-3-29 15:24:03 | 显示全部楼层
发表于 2025-3-29 18:57:21 | 显示全部楼层
,Multi-Object On-Line Tracking as an Ill-Posed Problem: Ensemble Deep Learning at the Edge for Spatigh score means model one has previously seen the object, and a low score amounts to a new detection. By using a two-stage AI-trained ensemble at the edge device, we show that the proposed tracker can perform 10 times faster with its precise detection, and the reidentification at the second stage is
发表于 2025-3-29 21:27:18 | 显示全部楼层
,An Ensemble-Based Machine Learning for Predicting Fraud of Credit Card Transactions,ion, recall (sensitivity), and f1-score. Then, we selected the most accurate ML algorithms based on their classification performance and prediction accuracy. The second stage, known Ensemble-learning CCFD, is an ensemble model that applies the Man-Ensemble method on the most effective ML algorithms
发表于 2025-3-30 02:25:49 | 显示全部楼层
发表于 2025-3-30 05:30:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-17 23:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表