找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Information Management and Big Data; 10th Annual Internat Juan Antonio Lossio-Ventura,Eduardo Ceh-Varela,Hug Conference proceedings 2024 Th

[复制链接]
查看: 48206|回复: 61
发表于 2025-3-21 17:11:45 | 显示全部楼层 |阅读模式
书目名称Information Management and Big Data
副标题10th Annual Internat
编辑Juan Antonio Lossio-Ventura,Eduardo Ceh-Varela,Hug
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: Information Management and Big Data; 10th Annual Internat Juan Antonio Lossio-Ventura,Eduardo Ceh-Varela,Hug Conference proceedings 2024 Th
描述.This book constitutes the refereed proceedings of the 10th Annual International Conference on Information Management and Big Data, SIMBig 2023, held in Mexico City, Mexico, during December 13–15, 2023...The 19 full papers and 6 short papers included in this book were carefully reviewed and selected from 64 submissions. SIMBig 2023 introduced innovative approaches for analyzing and handling datasets as well as new methods based on Artificial Intelligence (AI), Data Science, Machine Learning, Natural Language Processing, Semantic Web, Data-driven Software Engineering, Health Informatics, and more..
出版日期Conference proceedings 2024
关键词Big Data; Artificial Intelligence; Deep Learning; Data Science; Natural Language Processing; Machine Lear
版次1
doihttps://doi.org/10.1007/978-3-031-63616-5
isbn_softcover978-3-031-63615-8
isbn_ebook978-3-031-63616-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Information Management and Big Data影响因子(影响力)




书目名称Information Management and Big Data影响因子(影响力)学科排名




书目名称Information Management and Big Data网络公开度




书目名称Information Management and Big Data网络公开度学科排名




书目名称Information Management and Big Data被引频次




书目名称Information Management and Big Data被引频次学科排名




书目名称Information Management and Big Data年度引用




书目名称Information Management and Big Data年度引用学科排名




书目名称Information Management and Big Data读者反馈




书目名称Information Management and Big Data读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:49:47 | 显示全部楼层
,Multivariable-Unistep Prediction of Travel Times in Public Transport Buses Using LSTM and Convolutiistep approach. We utilized a dataset of 1.6 million records of public transportation routes, including GPS points from buses and their stops. Experimental results show that the selected model is capable of predicting travel time, considering the spatiotemporal context, with an MAE of 19.55 s. Code: ..
发表于 2025-3-22 00:42:05 | 显示全部楼层
发表于 2025-3-22 08:17:45 | 显示全部楼层
,Analysis of Mexican Women’s Decision-Making Power Using Machine Learning Strategies,lgorithms. The results suggest no statistical difference between the methods with a .=0.741 Student’s t-test value. Both algorithms obtained 99% in terms of accuracy, sensitivity, and specificity and a false-positive ratio of 0.31% and 0.33%, respectively.
发表于 2025-3-22 11:20:09 | 显示全部楼层
,Analyzing Sentiments and Topics on Twitter Towards Rising Cost of Living,opic modeling to uncover the most discussed topics. Our approach employed a hybrid sentiment analysis method that utilized three lexicons for preliminary tweet labeling and fine-tuned a RoBERTa model. Our results demonstrate the superior effectiveness of our methods, which provided an in-depth analysis of the cost-of-living situation in the UK.
发表于 2025-3-22 15:07:05 | 显示全部楼层
,Novel Algorithm to Predict Electoral Trends, Case in Mexico,he algorithm accordingly. Subsequently, we applied the tool to a sample of 10,000 tweets during the 2018 presidential elections. The results obtained by the algorithm proposed in this research show similarity in trend with the results obtained by the National Electoral Institute of Mexico.
发表于 2025-3-22 20:47:31 | 显示全部楼层
发表于 2025-3-22 23:05:09 | 显示全部楼层
发表于 2025-3-23 02:45:58 | 显示全部楼层
,Efficient Classification of SARS-CoV-2 Spike Sequences Using Federated Learning,model aggregation, and model heterogeneity. Since the proposed model is distributed, it could scale on “Big Data” easily. We plan to use this proof-of-concept to implement a privacy-preserving pandemic response strategy.
发表于 2025-3-23 08:29:29 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 13:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表