找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Inductive Logic Programming; 21st International C Stephen H. Muggleton,Alireza Tamaddoni-Nezhad,Fran Conference proceedings 2012 Springer-V

[复制链接]
楼主: Cession
发表于 2025-3-25 06:37:30 | 显示全部楼层
Inference and Learning in Planningmputational, as all models, whether accommodating non-determinism and feedback or not, are intractable in the worst case. In the last few years, however, significant progress has been made resulting in algorithms that can produce plans effectively in a variety of settings. These developments have to
发表于 2025-3-25 10:48:12 | 显示全部楼层
发表于 2025-3-25 13:02:56 | 显示全部楼层
Exploiting Constraintsmall primitives and these decompositions can simulate complex propagation algorithms that perform sophisticated inference about a problem. We illustrate this approach with examples of exploiting constraints in propositional satisfiability (SAT), pseudo-Boolean (PB) solving, integer linear programmin
发表于 2025-3-25 18:59:45 | 显示全部楼层
发表于 2025-3-25 23:35:28 | 显示全部楼层
发表于 2025-3-26 03:41:36 | 显示全部楼层
发表于 2025-3-26 06:17:03 | 显示全部楼层
发表于 2025-3-26 09:09:55 | 显示全部楼层
Learning Directed Relational Models with Recursive DependenciesA key characteristic of relational data is that the value of a predicate often depends on values of the same predicate for related entities. In this paper we present a new approach to learning directed relational models which utilizes two key concepts: a pseudo likelihood measure that is well define
发表于 2025-3-26 15:17:20 | 显示全部楼层
发表于 2025-3-26 20:43:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 00:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表