找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Incremental Learning for Motion Prediction of Pedestrians and Vehicles; Alejandro Dizan Vasquez Govea Book 2010 Springer-Verlag Berlin Hei

[复制链接]
查看: 54553|回复: 44
发表于 2025-3-21 19:40:52 | 显示全部楼层 |阅读模式
书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles
编辑Alejandro Dizan Vasquez Govea
视频video
概述Recent research in the area of motion prediction of Pedestrians and Vehicles.Presents the modeling, learning and prediction of motion.Based on the winning thesis of the EURON Georges Giralt award
丛书名称Springer Tracts in Advanced Robotics
图书封面Titlebook: Incremental Learning for Motion Prediction of Pedestrians and Vehicles;  Alejandro Dizan Vasquez Govea Book 2010 Springer-Verlag Berlin Hei
描述.Modeling and predicting human and vehicle motion is an active research domain.Owing to the difficulty in modeling the various factors that determine motion(e.g. internal state, perception) this is often tackled by applying machinelearning techniques to build a statistical model, using as input a collectionof trajectories gathered through a sensor (e.g. camera, laser scanner), and thenusing that model to predict further motion. Unfortunately, most currenttechniques use offline learning algorithms, meaning that they are not able tolearn new motion patterns once the learning stage has finished...This books presents a lifelong learning approach where motion patterns can belearned incrementally, and in parallel with prediction. The approach is based ona novel extension to hidden Markov models, and the main contribution presentedin this book, called growing hidden Markov models, which gives us the ability tolearn incrementally both the parameters and the structure of the model. Theproposed approach has been extensively validated with synthetic and realtrajectory data. In our experiments our approach consistently learned motionmodels that were more compact and accurate than those produce
出版日期Book 2010
关键词Hidden Markov Models; Motion prediction; behaviour modelling; hidden markov model; machine learning; robo
版次1
doihttps://doi.org/10.1007/978-3-642-13642-9
isbn_softcover978-3-642-26385-9
isbn_ebook978-3-642-13642-9Series ISSN 1610-7438 Series E-ISSN 1610-742X
issn_series 1610-7438
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles影响因子(影响力)




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles影响因子(影响力)学科排名




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles网络公开度




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles网络公开度学科排名




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles被引频次




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles被引频次学科排名




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles年度引用




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles年度引用学科排名




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles读者反馈




书目名称Incremental Learning for Motion Prediction of Pedestrians and Vehicles读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:55:23 | 显示全部楼层
发表于 2025-3-22 00:46:05 | 显示全部楼层
发表于 2025-3-22 05:33:18 | 显示全部楼层
发表于 2025-3-22 08:55:09 | 显示全部楼层
发表于 2025-3-22 16:01:11 | 显示全部楼层
发表于 2025-3-22 19:23:16 | 显示全部楼层
发表于 2025-3-22 22:03:19 | 显示全部楼层
发表于 2025-3-23 04:30:37 | 显示全部楼层
发表于 2025-3-23 07:04:02 | 显示全部楼层
e Ergebnisse sind deshalb für Hersteller biometrischer Systeme, Urheber von Gesetzen, Vorschriften, Standards und Normen und für Entscheidungsträger des IT-Sicherheitsmanagements im Unternehmen interessant..978-3-658-23465-2978-3-658-23466-9Series ISSN 2946-0301 Series E-ISSN 2946-031X
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-9 18:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表