找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Image and Video Technology; 8th Pacific-Rim Symp Manoranjan Paul,Carlos Hitoshi,Qingming Huang Conference proceedings 2018 Springer Nature

[复制链接]
楼主: 黑暗社会
发表于 2025-3-30 11:08:38 | 显示全部楼层
发表于 2025-3-30 14:37:19 | 显示全部楼层
Visual Comparison Based on Multi-class Classification Modeldict whether a visual attribute of one image is equal to that of another image. Most existing methods for visual comparison relying on ranking Support Vector Machine (SVM) functions only distinguish which image in a pair exhibits an attribute more or less in test time. However, it is significant to
发表于 2025-3-30 19:55:09 | 显示全部楼层
发表于 2025-3-30 23:23:50 | 显示全部楼层
Using Sparse-Point Disparity Estimation and Spatial Propagation to Construct Dense Disparity Map for this kind of application to estimate a reliable dense disparity map. In this paper, we propose a strategy of using a sparse feature point set to estimate reliable disparity values, which are then propagated to other non-feature points to form the final dense disparity map. Our selected feature poin
发表于 2025-3-31 03:08:18 | 显示全部楼层
发表于 2025-3-31 07:52:20 | 显示全部楼层
Single Image Dehazing via Image Generatingthe number of the equations is smaller than the number of unknowns. In this paper, a deep learning-based method, called Dehaze CNN, is proposed to estimate a clear image patch from a hazy image patch, which can be used to reconstruct a haze-free image. Our method recovers a clear image by a learning
发表于 2025-3-31 12:02:22 | 显示全部楼层
Automatic Brain Tumor Segmentation in Multispectral MRI Volumes Using a Random Forest Approachention of medical staff upon suspected positive cases. This paper proposes a machine learning solution based on binary decision trees and random forest technique, trained to provide accurate segmentation of brain tumors from multispectral MRI volumes. The current version of our system was trained an
发表于 2025-3-31 15:15:47 | 显示全部楼层
发表于 2025-3-31 19:37:42 | 显示全部楼层
发表于 2025-3-31 23:44:37 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-15 10:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表