找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ICT Innovations 2019. Big Data Processing and Mining; 11th International C Sonja Gievska,Gjorgji Madjarov Conference proceedings 2019 Sprin

[复制链接]
查看: 44120|回复: 65
发表于 2025-3-21 17:58:01 | 显示全部楼层 |阅读模式
书目名称ICT Innovations 2019. Big Data Processing and Mining
副标题11th International C
编辑Sonja Gievska,Gjorgji Madjarov
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: ICT Innovations 2019. Big Data Processing and Mining; 11th International C Sonja Gievska,Gjorgji Madjarov Conference proceedings 2019 Sprin
描述This book constitutes the refereed proceedings of the 11th International ICT Innovations Conference, ICT Innovations 2019, held in Ohrid, Macedonia, in October 2019..The 18 full papers presented were carefully reviewed and selected from 75 submissions. They cover the following topics: sensor applications and deployments, embedded and cyber-physical systems, robotics, network architectures, cloud computing, software infrastructure, software creation and management, models of computation, computational complexity and cryptography, design and analysis of algorithms, mathematical optimization, probability and statistics, data management systems, data mining, human computer interaction (HCI), artificial intelligence, machine learning, life and medical sciences, health care information systems, bioinformatics..
出版日期Conference proceedings 2019
关键词artificial intelligence; data mining; information retrieval; Natural Language Processing (NLP); natural
版次1
doihttps://doi.org/10.1007/978-3-030-33110-8
isbn_softcover978-3-030-33109-2
isbn_ebook978-3-030-33110-8Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

书目名称ICT Innovations 2019. Big Data Processing and Mining影响因子(影响力)




书目名称ICT Innovations 2019. Big Data Processing and Mining影响因子(影响力)学科排名




书目名称ICT Innovations 2019. Big Data Processing and Mining网络公开度




书目名称ICT Innovations 2019. Big Data Processing and Mining网络公开度学科排名




书目名称ICT Innovations 2019. Big Data Processing and Mining被引频次




书目名称ICT Innovations 2019. Big Data Processing and Mining被引频次学科排名




书目名称ICT Innovations 2019. Big Data Processing and Mining年度引用




书目名称ICT Innovations 2019. Big Data Processing and Mining年度引用学科排名




书目名称ICT Innovations 2019. Big Data Processing and Mining读者反馈




书目名称ICT Innovations 2019. Big Data Processing and Mining读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:12:52 | 显示全部楼层
Communications in Computer and Information Sciencehttp://image.papertrans.cn/i/image/460161.jpg
发表于 2025-3-22 03:09:08 | 显示全部楼层
发表于 2025-3-22 05:51:15 | 显示全部楼层
发表于 2025-3-22 12:05:37 | 显示全部楼层
,Detection of Toy Soldiers Taken from a Bird’s Perspective Using Convolutional Neural Networks,
发表于 2025-3-22 14:22:53 | 显示全部楼层
发表于 2025-3-22 18:58:14 | 显示全部楼层
发表于 2025-3-22 21:41:34 | 显示全部楼层
Diatom Ecological Modelling with Weighted Pattern Tree Algorithm by Using Polygonal and Gaussian Me while the models that are built with low number of MFs are excellent for making predictions for unseen data. The results from this research can be used for ecological modelling of diatoms, to classify a given diatom into a particular water quality class.
发表于 2025-3-23 02:22:06 | 显示全部楼层
Ski Injury Predictions with Explanations,on about reasons for specific decision. The proposed models were created on Mt. Kopaonik, Serbia ski resort and it is shown that ski injury in the following hour on specific ski slope can be predicted with AUC ~0.76, which is better up to ~15% compared to classical approaches such as logistic regres
发表于 2025-3-23 07:49:27 | 显示全部楼层
Image Augmentation with Neural Style Transfer,s which are frequently used in computer vision: ImageNet and Painter by Numbers (PBN). Afterwards, the model is used to generate new images from the CIFAR-100 and Tiny-ImageNet-200 datasets. The performance of the augmentation model is evaluated by a separate convolutional neural network. The evalua
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-6 03:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表