找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Handbook of Big Data Analytics and Forensics; Kim-Kwang Raymond Choo,Ali Dehghantanha Book 2022 Springer Nature Switzerland AG 2022 cyber

[复制链接]
查看: 35498|回复: 63
发表于 2025-3-21 19:24:43 | 显示全部楼层 |阅读模式
书目名称Handbook of Big Data Analytics and Forensics
编辑Kim-Kwang Raymond Choo,Ali Dehghantanha
视频videohttp://file.papertrans.cn/421/420871/420871.mp4
概述Covers advances in big data analytics and digital forensics from an interdisciplinary lens.Provides a comprehensive review and bibliometric analysis of big data and IoT applications, as well as future
图书封面Titlebook: Handbook of Big Data Analytics and Forensics;  Kim-Kwang Raymond Choo,Ali Dehghantanha Book 2022 Springer Nature Switzerland AG 2022 cyber
描述.This handbook discusses challenges and limitations in existing solutions, and presents state-of-the-art advances from both academia and industry, in big data analytics and digital forensics. The second chapter comprehensively reviews IoT security, privacy, and forensics literature, focusing on IoT and unmanned aerial vehicles (UAVs). The authors propose a deep learning-based approach to process cloud’s log data and mitigate enumeration attacks in the third chapter. The fourth chapter proposes a robust fuzzy learning model to protect IT-based infrastructure against advanced persistent threat (APT) campaigns. Advanced and fair clustering approach for industrial data, which is capable of training with huge volume of data in a close to linear time is introduced in the fifth chapter, as well as offering an adaptive deep learning model to detect cyberattacks targeting cyber physical systems (CPS) covered in the sixth chapter.   .The authors evaluate the performance of unsupervised machine learning for detecting cyberattacks against industrial control systems (ICS) in chapter 7, and the next chapter presents a robust fuzzy Bayesian approach for ICS’s cyber threat hunting. This handbook a
出版日期Book 2022
关键词cyber threat; cyber security; privacy; big data; threat intelligence; machine learning; cyber forensics; in
版次1
doihttps://doi.org/10.1007/978-3-030-74753-4
isbn_softcover978-3-030-74755-8
isbn_ebook978-3-030-74753-4
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

书目名称Handbook of Big Data Analytics and Forensics影响因子(影响力)




书目名称Handbook of Big Data Analytics and Forensics影响因子(影响力)学科排名




书目名称Handbook of Big Data Analytics and Forensics网络公开度




书目名称Handbook of Big Data Analytics and Forensics网络公开度学科排名




书目名称Handbook of Big Data Analytics and Forensics被引频次




书目名称Handbook of Big Data Analytics and Forensics被引频次学科排名




书目名称Handbook of Big Data Analytics and Forensics年度引用




书目名称Handbook of Big Data Analytics and Forensics年度引用学科排名




书目名称Handbook of Big Data Analytics and Forensics读者反馈




书目名称Handbook of Big Data Analytics and Forensics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:17:26 | 显示全部楼层
Die Erythema multiforme-Gruppe,ontemporary approaches and techniques, including those based on machine and deep learning. A number of research challenges and opportunities are also presented in the book, which hopefully will motivate further research in this area.
发表于 2025-3-22 02:02:11 | 显示全部楼层
发表于 2025-3-22 08:14:09 | 显示全部楼层
发表于 2025-3-22 12:03:21 | 显示全部楼层
发表于 2025-3-22 15:28:20 | 显示全部楼层
发表于 2025-3-22 19:13:42 | 显示全部楼层
发表于 2025-3-22 23:47:50 | 显示全部楼层
analysis of big data and IoT applications, as well as future.This handbook discusses challenges and limitations in existing solutions, and presents state-of-the-art advances from both academia and industry, in big data analytics and digital forensics. The second chapter comprehensively reviews IoT s
发表于 2025-3-23 01:26:30 | 显示全部楼层
发表于 2025-3-23 08:10:21 | 显示全部楼层
,Erkrankungen der endokrinen Drüsen,ccuracy rate and 0% false-negative and false-positive rates. The true-positive and true-negative rates were both 100%. These results show that adaptive neural trees borrow from deep neural networks and decision trees to deliver exceptional results.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-5 07:42
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表