找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
楼主: arouse
发表于 2025-3-30 12:16:37 | 显示全部楼层
https://doi.org/10.1007/978-3-031-59193-8ding chapter can be applied to perspective cameras if we introduce new unknowns called projective depths. They are determined so that the observation matrix can be factorized, for which two approaches exist. One, called the primary method, iteratively determines the projective depths with the result
发表于 2025-3-30 12:51:01 | 显示全部楼层
Michael ten Hompel,Michael Henkea more generalized mathematical framework. We do a detailed error analysis in general terms and derive explicit expressions for the covariance and bias of the solution. The hyper-renormalization procedure is derived in this mathematical framework.
发表于 2025-3-30 16:52:50 | 显示全部楼层
发表于 2025-3-31 00:16:31 | 显示全部楼层
发表于 2025-3-31 04:38:44 | 显示全部楼层
Christina De La Rocha,Daniel J. ConleyThis chapter states the background and organization of this book and describes distinctive features of the volume.
发表于 2025-3-31 06:53:21 | 显示全部楼层
Introduction,This chapter states the background and organization of this book and describes distinctive features of the volume.
发表于 2025-3-31 10:29:30 | 显示全部楼层
发表于 2025-3-31 13:40:43 | 显示全部楼层
Ahmet Bindal,Sotoudeh Hamedi-Haghirst derive the Sampson error as a first approximation to the Mahalanobis distance (a generalization of the geometric distance or the reprojection error) of ML. Then we do high-order error analysis to derive explicit expressions for the covariance and bias of the solution. The hyperaccurate correction procedure is derived in this framework.
发表于 2025-3-31 19:27:06 | 显示全部楼层
Accuracy of Geometric Estimationa more generalized mathematical framework. We do a detailed error analysis in general terms and derive explicit expressions for the covariance and bias of the solution. The hyper-renormalization procedure is derived in this mathematical framework.
发表于 2025-3-31 22:07:25 | 显示全部楼层
Maximum Likelihood of Geometric Estimationirst derive the Sampson error as a first approximation to the Mahalanobis distance (a generalization of the geometric distance or the reprojection error) of ML. Then we do high-order error analysis to derive explicit expressions for the covariance and bias of the solution. The hyperaccurate correction procedure is derived in this framework.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-21 07:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表