找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ;

[复制链接]
查看: 28749|回复: 46
发表于 2025-3-21 19:19:48 | 显示全部楼层 |阅读模式
书目名称Group Recommender Systems
编辑Alexander Felfernig,Ludovico Boratto,Marko Tkalčič
视频video
丛书名称SpringerBriefs in Electrical and Computer Engineering
图书封面Titlebook: ;
出版日期Book 2018
版次1
doihttps://doi.org/10.1007/978-3-319-75067-5
isbn_softcover978-3-319-75066-8
isbn_ebook978-3-319-75067-5Series ISSN 2191-8112 Series E-ISSN 2191-8120
issn_series 2191-8112
The information of publication is updating

书目名称Group Recommender Systems影响因子(影响力)




书目名称Group Recommender Systems影响因子(影响力)学科排名




书目名称Group Recommender Systems网络公开度




书目名称Group Recommender Systems网络公开度学科排名




书目名称Group Recommender Systems被引频次




书目名称Group Recommender Systems被引频次学科排名




书目名称Group Recommender Systems年度引用




书目名称Group Recommender Systems年度引用学科排名




书目名称Group Recommender Systems读者反馈




书目名称Group Recommender Systems读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:54:47 | 显示全部楼层
Algorithms for Group Recommendationcally, we focus on collaborative filtering, content-based filtering, constraint-based, critiquing-based, and hybrid recommendation. Throughout this chapter, we differentiate between (1) . and (2) . as basic strategies for aggregating the preferences of individual group members.
发表于 2025-3-22 03:36:13 | 显示全部楼层
Evaluating Group Recommender Systemstechniques for group recommender systems are often the same or similar to those that are used for single user recommenders. We show how to apply these techniques on the basis of examples and introduce evaluation approaches that are specifically useful in group recommendation scenarios.
发表于 2025-3-22 08:05:05 | 显示全部楼层
Group Recommender Applicationsmovies and TV programs, travel destinations and events, news and web pages, healthy living, software engineering, and domain-independent recommenders. Each application is analyzed with regard to the characteristics of group recommenders as introduced in Chap. ..
发表于 2025-3-22 10:23:59 | 显示全部楼层
Handling Preferencescept of . and then discuss how preferences can be handled for different recommendation approaches. Furthermore, we sketch how to deal with inconsistencies such as contradicting preferences of individual users.
发表于 2025-3-22 13:29:03 | 显示全部楼层
Explanations for Groupsrs of recommender systems want to convince users to purchase specific items. Users should better understand how the recommender system works and why a specific item has been recommended. Users should also develop a more in-depth understanding of the item domain. Consequently, explanations are design
发表于 2025-3-22 18:08:50 | 显示全部楼层
发表于 2025-3-23 01:17:01 | 显示全部楼层
Biases in Group Decisionsigh-quality decisions. In this chapter, we provide an overview of . and show possibilities to counteract these. The overview includes (1) biases that exist in both single user and group decision making (decoy effects, serial position effects, framing, and anchoring) and (2) biases that especially oc
发表于 2025-3-23 01:25:44 | 显示全部楼层
Personality, Emotions, and Group Dynamicsetermine recommendations suitable for the whole group. However, preference aggregation can go beyond the integration of the preferences of individual group members. In this chapter, we show how to take into account the aspects of ., ., and . when determining item predictions for groups. We summarize
发表于 2025-3-23 08:34:43 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 22:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表