找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geostatistics for Compositional Data with R; Raimon Tolosana-Delgado,Ute Mueller Book 2021 Springer Nature Switzerland AG 2021 composition

[复制链接]
查看: 16433|回复: 46
发表于 2025-3-21 16:39:05 | 显示全部楼层 |阅读模式
书目名称Geostatistics for Compositional Data with R
编辑Raimon Tolosana-Delgado,Ute Mueller
视频video
概述Gives an integrated approach to geostatistical modelling of compositional data.Modelling approaches are illustrated through detailed examples from real world data.Presents workflows and R code for all
丛书名称Use R!
图书封面Titlebook: Geostatistics for Compositional Data with R;  Raimon Tolosana-Delgado,Ute Mueller Book 2021 Springer Nature Switzerland AG 2021 composition
描述.This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods... All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the method
出版日期Book 2021
关键词compositional data analysis; Multivariate kriging; Spatial factor analysis; Crossvalidation; Spatial dec
版次1
doihttps://doi.org/10.1007/978-3-030-82568-3
isbn_softcover978-3-030-82570-6
isbn_ebook978-3-030-82568-3Series ISSN 2197-5736 Series E-ISSN 2197-5744
issn_series 2197-5736
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Geostatistics for Compositional Data with R影响因子(影响力)




书目名称Geostatistics for Compositional Data with R影响因子(影响力)学科排名




书目名称Geostatistics for Compositional Data with R网络公开度




书目名称Geostatistics for Compositional Data with R网络公开度学科排名




书目名称Geostatistics for Compositional Data with R被引频次




书目名称Geostatistics for Compositional Data with R被引频次学科排名




书目名称Geostatistics for Compositional Data with R年度引用




书目名称Geostatistics for Compositional Data with R年度引用学科排名




书目名称Geostatistics for Compositional Data with R读者反馈




书目名称Geostatistics for Compositional Data with R读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:38:18 | 显示全部楼层
Geostatistics for Compositional Data with R978-3-030-82568-3Series ISSN 2197-5736 Series E-ISSN 2197-5744
发表于 2025-3-22 00:27:28 | 显示全部楼层
The Case of Santa Barbara City College,This chapter provides the framework for the contents of this book. This includes a brief introduction to the problem of geospatial analysis of compositional data and approaches to the solution. Additionally, the data sets and the . packages used throughout the book are presented.
发表于 2025-3-22 08:11:07 | 显示全部楼层
Experience, Age, Education, Gender, and RaceThis chapter provides the concepts from compositional data analysis required to prepare compositional data for geostatistical treatment. Specifically we define the term closure, its rationale and caveats, and the various ways of escaping from its curse, i.e. the various forms of log-ratio transformation.
发表于 2025-3-22 10:13:56 | 显示全部楼层
发表于 2025-3-22 12:59:11 | 显示全部楼层
David Smallbone,Friederike WelterIn this chapter the tools for spatial exploratory analysis are provided. These include data postings, swathplots and experimental variograms.
发表于 2025-3-22 21:07:09 | 显示全部楼层
Eirini Daskalaki,Denis Hyams-SsekasiHere we look at model fitting. The structural functions mainly used for model fitting are introduced. The main tool for model fitting is the linear model of coregionalisation, but the application of the MAF transformation to build a linear model of coregionalisation is also demonstrated.
发表于 2025-3-22 21:34:50 | 显示全部楼层
发表于 2025-3-23 02:45:28 | 显示全部楼层
Lessons from Czech Privatisation,Cross-validation is a technique devised to provide a quality assessment of the estimates derived from cokriging and allows appraising different modelling approaches in terms of the choice of variograms and search neighbourhoods.
发表于 2025-3-23 06:58:19 | 显示全部楼层
Veland Ramadani,Léo-Paul Dana,Vanessa RattenIn many instances it is desirable to capture more than the first two moments of the data when exploring their variability. In this chapter direct sampling simulation for compositional data is introduced, which explicitly incorporates multiple-point statistics in the simulation.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表