找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[复制链接]
楼主: Nixon
发表于 2025-3-25 03:52:33 | 显示全部楼层
发表于 2025-3-25 08:49:53 | 显示全部楼层
发表于 2025-3-25 14:00:47 | 显示全部楼层
发表于 2025-3-25 19:23:41 | 显示全部楼层
Gianna Stefani,Ugo Boscain,Mario SigalottiFeature chapter on open problems.Presents state of the art of the research in the field.Collects papers by top level scientists.Includes supplementary material:
发表于 2025-3-25 23:22:55 | 显示全部楼层
https://doi.org/10.1007/978-3-319-02132-4control system; geometric control; sub-Riemannian geometry
发表于 2025-3-26 01:16:57 | 显示全部楼层
,Dokumentenlogistik – ein Fallbeispiel,omains is investigated on the ellipsoid of revolution. Building upon previous results [., .], both the oblate and prolate cases are addressed. Preliminary numerical estimates are given in the prolate situation.
发表于 2025-3-26 04:55:01 | 显示全部楼层
The Method of Majority Decision,an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.
发表于 2025-3-26 08:46:29 | 显示全部楼层
On the injectivity and nonfocal domains of the ellipsoid of revolution,omains is investigated on the ellipsoid of revolution. Building upon previous results [., .], both the oblate and prolate cases are addressed. Preliminary numerical estimates are given in the prolate situation.
发表于 2025-3-26 15:28:50 | 显示全部楼层
On the Alexandrov Topology of sub-Lorentzian Manifolds,an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.
发表于 2025-3-26 18:26:53 | 显示全部楼层
Dokumente zum Europäischen RechtWe discuss some challenging open problems in the geometric control theory and sub-Riemannian geometry.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-10-10 05:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表