用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Computing with Clifford Algebras; Theoretical Foundati Gerald Sommer Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algebra.Alg

[复制链接]
查看: 31094|回复: 58
发表于 2025-3-21 18:02:15 | 显示全部楼层 |阅读模式
书目名称Geometric Computing with Clifford Algebras
副标题Theoretical Foundati
编辑Gerald Sommer
视频video
图书封面Titlebook: Geometric Computing with Clifford Algebras; Theoretical Foundati Gerald Sommer Book 2001 Springer-Verlag Berlin Heidelberg 2001 Algebra.Alg
描述Clifford algebra, then called geometric algebra, was introduced more than a cenetury ago by William K. Clifford, building on work by Grassmann and Hamilton. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work outlines that Clifford algebra provides a universal and powerfull algebraic framework for an elegant and coherent representation of various problems occuring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics. This monograph-like anthology introduces the concepts and framework of Clifford algebra and provides computer scientists, engineers, physicists, and mathematicians with a rich source of examples of how to work with this formalism.
出版日期Book 2001
关键词Algebra; Algebraic Expressions; Algebraic Geometry; Clifford Algebras; Computational Geometry; Computer; C
版次1
doihttps://doi.org/10.1007/978-3-662-04621-0
isbn_softcover978-3-642-07442-4
isbn_ebook978-3-662-04621-0
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

书目名称Geometric Computing with Clifford Algebras影响因子(影响力)




书目名称Geometric Computing with Clifford Algebras影响因子(影响力)学科排名




书目名称Geometric Computing with Clifford Algebras网络公开度




书目名称Geometric Computing with Clifford Algebras网络公开度学科排名




书目名称Geometric Computing with Clifford Algebras被引频次




书目名称Geometric Computing with Clifford Algebras被引频次学科排名




书目名称Geometric Computing with Clifford Algebras年度引用




书目名称Geometric Computing with Clifford Algebras年度引用学科排名




书目名称Geometric Computing with Clifford Algebras读者反馈




书目名称Geometric Computing with Clifford Algebras读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:33:27 | 显示全部楼层
发表于 2025-3-22 00:31:51 | 显示全部楼层
发表于 2025-3-22 08:32:08 | 显示全部楼层
发表于 2025-3-22 09:44:38 | 显示全部楼层
发表于 2025-3-22 14:46:43 | 显示全部楼层
发表于 2025-3-22 20:45:59 | 显示全部楼层
https://doi.org/10.1007/978-94-007-0507-4ifferent formalisms. For example, standard matrix analysis has been used in [102] and [210]. An analysis of multiple view tensors in terms of Grassmann-Cayley (GC) algebra can be found in [82], [179], [80]. Geometric Algebra (GA) has also been applied to the problem [184], [185], [142], [141].
发表于 2025-3-22 23:31:51 | 显示全部楼层
Susan Carter,Cally Guerin,Claire Aitchisonld” has to be understood by a computer. This may be with regard to control movement (robots), to survey a scene for later interpretation (medicine), or to create and mix artificial with real environments (special effects).
发表于 2025-3-23 03:33:52 | 显示全部楼层
发表于 2025-3-23 06:37:56 | 显示全部楼层
Spatial-Color Clifford Algebras for Invariant Image RecognitionPractice shows that they successfully cope with the problem of recognizing objects at different locations, of different views and illumination, and in different orders of blurring. But how is this done by the brain? How do we see? How do we recognize constantly moving and changing objects of the surrounding world?
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-5 05:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表