找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Genetic Programming for Production Scheduling; An Evolutionary Lear Fangfang Zhang,Su Nguyen,Mengjie Zhang Book 2021 The Editor(s) (if appl

[复制链接]
楼主: 恰当
发表于 2025-3-25 03:26:06 | 显示全部楼层
978-981-16-4861-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
发表于 2025-3-25 10:25:36 | 显示全部楼层
Genetic Programming for Production Scheduling978-981-16-4859-5Series ISSN 2730-9908 Series E-ISSN 2730-9916
发表于 2025-3-25 12:24:27 | 显示全部楼层
Fangfang Zhang,Su Nguyen,Mengjie ZhangPresents theoretical aspects and applications of genetic programming for production scheduling.Explores the modern and unique interfaces between operations research and machine learning.Offers an intr
发表于 2025-3-25 19:45:57 | 显示全部楼层
发表于 2025-3-25 22:56:36 | 显示全部楼层
发表于 2025-3-26 01:46:59 | 显示全部楼层
Learning Schedule Construction Heuristicseduling algorithms. Details about attributes extracted from production data and representations of scheduling construction heuristics are provided in this chapter. The advantages and disadvantages of each representation are analysed, and the generalisation of evolved heuristics is examined by using
发表于 2025-3-26 07:09:38 | 显示全部楼层
Learning Schedule Improvement Heuristicss presented in this book and other meta-heuristics in the literature. Extended attribute sets and several evaluation mechanisms are introduced in this chapter to allow GP to evolve scheduling improvement heuristics. Experiment results show that the evolved scheduling improvement heuristics outperfor
发表于 2025-3-26 12:04:46 | 显示全部楼层
Learning to Augment Operations Research Algorithmsing. A simple genetic programming algorithm is introduced to evolve variable selectors for optimisation solvers to reduce the computational efforts required to obtain high-quality or optimal solutions for production scheduling. The optimisation solver enhanced by the evolved variable selectors can f
发表于 2025-3-26 14:50:03 | 显示全部楼层
Representations with Multi-tree and Cooperative Coevolutionexible job shop scheduling. Two strategies are introduced, one is the genetic programming with cooperative coevolution, the other is the genetic programming with multi-tree representation. The results show the advantages and disadvantages of these two strategies over learning two rules simultaneousl
发表于 2025-3-26 17:00:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 11:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表