找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Linear Models With Examples in R; Peter K. Dunn,Gordon K.‘Smyth Textbook 2018 Springer Science+Business Media, LLC, part of Sp

[复制链接]
楼主: 积聚
发表于 2025-3-28 16:44:42 | 显示全部楼层
https://doi.org/10.1007/978-3-319-65043-2ssion parameters and possibly the dispersion parameter .. Because .s assume a specific probability distribution for the responses from the . family, maximum likelihood estimation procedures are used for parameter estimation, and general formulae are developed for the . context. We first derive the s
发表于 2025-3-28 21:50:08 | 显示全部楼层
https://doi.org/10.1057/978-1-137-55854-1re applied in the context of .s. We first consider inference when . is known (Sect. .), then the large-sample asymptotic results (Sect. .) that underlie all the distributional results for the test statistics in that section. Section . then introduces goodness-of-fit tests to determine whether the li
发表于 2025-3-28 23:40:33 | 显示全部楼层
,“Living in the Twilight Zone”,umptions of the . are first reviewed (Sect. .), then the three basic types of residuals (Pearson, deviance and quantile) are defined (Sect. .). The leverages are then given in the . context (Sect. .) leading to the development of standardized residuals (Sect. .). The various diagnostic tools for che
发表于 2025-3-29 03:07:45 | 显示全部楼层
Menus with Advanced Scripting and DHTML,all .s. It is used to model proportions, where the proportions are obtained as the number of ‘positive’ cases out of a total number of independent cases. We first compile important information about the binomial distribution (Sect. .), then discuss the common link functions used for binomial .s (Sec
发表于 2025-3-29 09:24:49 | 显示全部楼层
发表于 2025-3-29 13:40:15 | 显示全部楼层
https://doi.org/10.1007/978-3-662-55612-2cal quantity that is always present. The two most common .s for this type of data are based on the gamma and inverse Gaussian distributions. Judicious choice of link function and transformations of the covariates ensure that a variety of relationships between the response and explanatory variables c
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 14:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表