用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: General Inequalities 5; 5th International Co Wolfgang Walter Book 1987 Birkhäuser Verlag Basel 1987 Differentialgleichung.manifold.number t

[复制链接]
楼主: Nonchalant
发表于 2025-3-28 14:40:40 | 显示全部楼层
发表于 2025-3-28 22:05:50 | 显示全部楼层
0373-3149 Overview: 978-3-0348-7194-5978-3-0348-7192-1Series ISSN 0373-3149 Series E-ISSN 2296-6072
发表于 2025-3-28 23:42:10 | 显示全部楼层
发表于 2025-3-29 06:13:53 | 显示全部楼层
-Designs and ,-wise Balanced Designs,f of the inequality above, first given by Kwong and Zettl in 1979, and later in 1981. Both types of proof offer an explanation of the fact that 4 is a global number for the inequality, for all intervals (a, ∞) and all weights w of the kind prescribed above.
发表于 2025-3-29 09:58:09 | 显示全部楼层
On a Hardy-Littlewood Type Integral Inequality with a Monotonic Weight Functionasing function on (a, ∞). The inequality is valid, with the number 4, for all complex-valued f such that f and f″ ε L. (a, ∞). In certain cases the number 4 is best possible and all cases of equality can be described..The example w(x) = x on (0, ∞) is considered in detail and it is shown the best po
发表于 2025-3-29 14:10:10 | 显示全部楼层
发表于 2025-3-29 18:23:15 | 显示全部楼层
On Some Discrete Quadratic Inequalities) in the middle term can be understood in four different ways (see introduction) and either the plus or the minus sign is taken. The best constants α, β are found in all cases. This is based on the determination of eigen-values of suitable Hermitean matrices.
发表于 2025-3-29 20:10:40 | 显示全部楼层
Some Inequalities for Geometric Meanstypified by.under appropriate conditions. The products on the left are replaced, in this paper, by geometric means with more general weights, and the factors m. on both sides by factors r. for suitably small r. Some inequalities having an analogous character are first discussed, since they led the w
发表于 2025-3-30 01:44:20 | 显示全部楼层
发表于 2025-3-30 05:06:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 10:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表