用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: General Inequalities 5; 5th International Co Wolfgang Walter Book 1987 Birkhäuser Verlag Basel 1987 Differentialgleichung.manifold.number t

[复制链接]
楼主: Nonchalant
发表于 2025-3-26 21:30:14 | 显示全部楼层
发表于 2025-3-27 03:53:05 | 显示全部楼层
Treatment of Rheumatic Diseases, that such a function is necessarily (t,t)-convex for all rational tε]0,1[. Furthermore we show that a function which fulfills the (s,t)-convexity inequality in a weakened sense is closely related to a uniquely determined (s,t)-convex function.
发表于 2025-3-27 08:55:01 | 显示全部楼层
Contributions to Inequalities IIwith x. ≥ 0 (1 ≤ i ≤ N), ∑ x. = a leads naturally to a dynamic programming approach. For the case N ↗ ∞, we prove, roughly speaking, that in case of homogeneity the “maximizing sequences” (a., a., …) of the functions in question tend to be close to geometric progressions.
发表于 2025-3-27 10:19:19 | 显示全部楼层
发表于 2025-3-27 16:51:49 | 显示全部楼层
发表于 2025-3-27 19:05:12 | 显示全部楼层
Weighted Inequalities for Maximal Functions in Spaces of Homogeneous Type With Applications to Non-I(x) there is a non-negative weight function V(x) which is finite a.e. and the fractional maximal function operator is bounded from L.(Vdμ) to L.(Udμ). The dual problem and the analogous problems for non-isotropic fractional integrals are also solved.
发表于 2025-3-28 00:37:13 | 显示全部楼层
发表于 2025-3-28 04:51:59 | 显示全部楼层
发表于 2025-3-28 09:22:04 | 显示全部楼层
On the Structure of (s,t)-Convex Functions that such a function is necessarily (t,t)-convex for all rational tε]0,1[. Furthermore we show that a function which fulfills the (s,t)-convexity inequality in a weakened sense is closely related to a uniquely determined (s,t)-convex function.
发表于 2025-3-28 11:13:31 | 显示全部楼层
978-3-0348-7194-5Birkhäuser Verlag Basel 1987
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-21 18:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表