找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolutionary Algorithms, Swarm Dynamics and Complex Networks; Methodology, Perspec Ivan Zelinka,Guanrong Chen Book 2018 Springer-Verlag Gmb

[复制链接]
查看: 53890|回复: 52
发表于 2025-3-21 17:10:44 | 显示全部楼层 |阅读模式
书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks
副标题Methodology, Perspec
编辑Ivan Zelinka,Guanrong Chen
视频video
概述Includes recent research in Complex Networks and Evolutionary Dynamics.Highlights the mutual relations between the dynamics of evolutionary algorithms, complex networks, and CML (Coupled Map Lattices)
丛书名称Emergence, Complexity and Computation
图书封面Titlebook: Evolutionary Algorithms, Swarm Dynamics and Complex Networks; Methodology, Perspec Ivan Zelinka,Guanrong Chen Book 2018 Springer-Verlag Gmb
描述.Evolutionary algorithms constitute a class of well-known algorithms, which are designed based on the Darwinian theory of evolution and Mendelian theory of heritage. They are partly based on random and partly based on deterministic principles. Due to this nature, it is challenging to predict and control its performance in solving complex nonlinear problems. Recently, the study of evolutionary dynamics is focused not only on the traditional investigations but also on the understanding and analyzing new principles, with the intention of controlling and utilizing their properties and performances toward more effective real-world applications. In this book, based on many years of intensive research of the authors, is proposing novel ideas about advancing evolutionary dynamics towards new phenomena including many new topics, even the dynamics of equivalent social networks. In fact, it includes more advanced complex networks and incorporates them with the CMLs (coupled map lattices), whichare usually used for spatiotemporal complex systems simulation and analysis, based on the observation that chaos in CML can be controlled, so does evolution dynamics. All the chapter authors are, to the
出版日期Book 2018
关键词Complex Networks; Coupled Map Lattices; Evolutionary Algorithms; Evolutionary Dynamics; spatiotemporal D
版次1
doihttps://doi.org/10.1007/978-3-662-55663-4
isbn_softcover978-3-662-57247-4
isbn_ebook978-3-662-55663-4Series ISSN 2194-7287 Series E-ISSN 2194-7295
issn_series 2194-7287
copyrightSpringer-Verlag GmbH Germany 2018
The information of publication is updating

书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks影响因子(影响力)




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks影响因子(影响力)学科排名




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks网络公开度




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks网络公开度学科排名




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks被引频次




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks被引频次学科排名




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks年度引用




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks年度引用学科排名




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks读者反馈




书目名称Evolutionary Algorithms, Swarm Dynamics and Complex Networks读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:02:13 | 显示全部楼层
发表于 2025-3-22 01:37:57 | 显示全部楼层
发表于 2025-3-22 05:17:45 | 显示全部楼层
发表于 2025-3-22 12:39:03 | 显示全部楼层
Sandro Longo,Maria Giovanna Tandaent trend of adaptive and learning methods for improving the performance of evolutionary computational techniques. It seems very likely that the complex network and its statistical characteristics can be used within those adaptive approaches. The network analysis also provides usefull insight into t
发表于 2025-3-22 13:43:01 | 显示全部楼层
发表于 2025-3-22 19:42:15 | 显示全部楼层
Eskalation und Deeskalation von Commitments on the experimental investigations on the time development and influence of different randomization types, different strategies for Differential Evolution (DE) through the analysis of complex network as a record of population dynamics and indices selection. The population is visualized as an evolvi
发表于 2025-3-22 22:52:23 | 显示全部楼层
发表于 2025-3-23 02:21:22 | 显示全部楼层
发表于 2025-3-23 08:26:04 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 05:34
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表