找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Embedded Computer Systems: Architectures, Modeling, and Simulation; 22nd International C Alex Orailoglu,Marc Reichenbach,Matthias Jung Conf

[复制链接]
楼主: Coronary-Artery
发表于 2025-3-28 16:46:17 | 显示全部楼层
发表于 2025-3-28 20:39:40 | 显示全部楼层
发表于 2025-3-28 23:46:37 | 显示全部楼层
发表于 2025-3-29 05:37:20 | 显示全部楼层
TREAM: A Tool for Evaluating Error Resilience of ,e-Based Models Using ,pproximate ,emorytion into the aforementioned parameters. Based on this, we construct a set of experiments using TREAM for different random forest structures and datasets over a set of bit error rates, where the relation between accuracy and bit error rate is considered for error resilience. The results demonstrate
发表于 2025-3-29 11:06:29 | 显示全部楼层
发表于 2025-3-29 14:09:32 | 显示全部楼层
ControlPULP: A RISC-V Power Controller for HPC Processors with Parallel Control-Law Computation Accester system with a specialized DMA engine and a fast multi-core interrupt controller for parallel acceleration of real-time power management policies. ControlPULP relies on a real-time OS (FreeRTOS) to schedule a Power Control Firmware (PCF) software layer. We evaluate ControlPULP design choices in
发表于 2025-3-29 17:50:40 | 显示全部楼层
发表于 2025-3-29 22:27:38 | 显示全部楼层
A Design Space Exploration Methodology for Enabling Tensor Train Decomposition in Edge Devicesstically pruned by removing inefficient solutions. Our experimental results prove that it is possible to output a limited set of solutions with better accuracy, memory, and FLOPs compared to the original (non-factorized) model. Our methodology has been developed as a standalone, parameterized module
发表于 2025-3-30 02:28:20 | 显示全部楼层
Study of DNN-Based Ragweed Detection from Dronesectivity. To overcome these challenges, we train state-of-the-art object detection and segmentation models on a ragweed dataset. The best performing segmentation models were compressed using shunt connections, fine-tuned with knowledge distillation, and further optimized with Nvidias TensorRT librar
发表于 2025-3-30 05:33:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 13:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表