找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elliptic Functions; Serge Lang Textbook 1987Latest edition Springer-Verlag New York Inc. 1987 Modular form.complex analysis.elliptic funct

[复制链接]
查看: 24483|回复: 53
发表于 2025-3-21 18:15:10 | 显示全部楼层 |阅读模式
书目名称Elliptic Functions
编辑Serge Lang
视频video
丛书名称Graduate Texts in Mathematics
图书封面Titlebook: Elliptic Functions;  Serge Lang Textbook 1987Latest edition Springer-Verlag New York Inc. 1987 Modular form.complex analysis.elliptic funct
描述Elliptic functions parametrize elliptic curves, and the intermingling of the analytic and algebraic-arithmetic theory has been at the center of mathematics since the early part of the nineteenth century. The book is divided into four parts. In the first, Lang presents the general analytic theory starting from scratch. Most of this can be read by a student with a basic knowledge of complex analysis. The next part treats complex multiplication, including a discussion of Deuring‘s theory of l-adic and p-adic representations, and elliptic curves with singular invariants. Part three covers curves with non-integral invariants, and applies the Tate parametrization to give Serre‘s results on division points. The last part covers theta functions and the Kronecker Limit Formula. Also included is an appendix by Tate on algebraic formulas in arbitrary charactistic.
出版日期Textbook 1987Latest edition
关键词Modular form; complex analysis; elliptic function; integral; operator; theta function
版次2
doihttps://doi.org/10.1007/978-1-4612-4752-4
isbn_softcover978-1-4612-9142-8
isbn_ebook978-1-4612-4752-4Series ISSN 0072-5285 Series E-ISSN 2197-5612
issn_series 0072-5285
copyrightSpringer-Verlag New York Inc. 1987
The information of publication is updating

书目名称Elliptic Functions影响因子(影响力)




书目名称Elliptic Functions影响因子(影响力)学科排名




书目名称Elliptic Functions网络公开度




书目名称Elliptic Functions网络公开度学科排名




书目名称Elliptic Functions被引频次




书目名称Elliptic Functions被引频次学科排名




书目名称Elliptic Functions年度引用




书目名称Elliptic Functions年度引用学科排名




书目名称Elliptic Functions读者反馈




书目名称Elliptic Functions读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:15:47 | 显示全部楼层
Reduction of Elliptic Curves We shall not give any proofs. These can be given ad hoc, as Deuring did, for the elliptic curves, or one can develop a general reduction theory, as in Shimura [39]. No matter what, it is a pain to lay these foundations, but the results can be stated simply. Although classically one reduces over a d
发表于 2025-3-22 04:06:07 | 显示全部楼层
Ihara’s Theoryoup [22], pointing out that it has the same. part as in characteristic zero, and that the part acting on the roots of unity is just that generated by the Frobenius element, i.e. those matrices having determinant a power of .. Ihara had the idea of lifting back singular values . of . in the algebraic
发表于 2025-3-22 06:22:21 | 显示全部楼层
发表于 2025-3-22 10:17:55 | 显示全部楼层
Korrektur von ProgrammieraufgabenLet . be an elliptic curve defined over a field .. For each positive integer . we denote by . the kernel of the map . i.e. it is the subgroup of points of order ..
发表于 2025-3-22 13:19:52 | 显示全部楼层
发表于 2025-3-22 20:17:26 | 显示全部楼层
发表于 2025-3-23 01:16:35 | 显示全部楼层
发表于 2025-3-23 04:01:33 | 显示全部楼层
Mathematik und Gott und die WeltLet Γ = .(.) again. We define Γ. (or Γ(.)) for each positive integer . to be the subgroup of Γ consisting of those matrices satisfying the condition .in other words..
发表于 2025-3-23 07:29:40 | 显示全部楼层
Erzieherische LeitvorstellungenIf ., . are positive integers, and .|., then we have a canonical homomorphism .and we can take the projective limit.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 21:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表