找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of Nonlinear Time Series Analysis and Forecasting; Jan G. De Gooijer Book 2017 Springer International Publishing Switzerland 2017

[复制链接]
查看: 31442|回复: 52
发表于 2025-3-21 17:35:11 | 显示全部楼层 |阅读模式
书目名称Elements of Nonlinear Time Series Analysis and Forecasting
编辑Jan G. De Gooijer
视频video
概述Presents a detailed, almost encyclopedic account of nonlinear time series analysis.Shows concrete applications of modern nonlinear time series analysis on a variety of empirical time series, with a li
丛书名称Springer Series in Statistics
图书封面Titlebook: Elements of Nonlinear Time Series Analysis and Forecasting;  Jan G. De Gooijer Book 2017 Springer International Publishing Switzerland 2017
描述.This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods..The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods..To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a
出版日期Book 2017
关键词nonlinear time series; ARMA model; AR-GARCH model; time-domain linearity test; model selection; high dime
版次1
doihttps://doi.org/10.1007/978-3-319-43252-6
isbn_softcover978-3-319-82770-4
isbn_ebook978-3-319-43252-6Series ISSN 0172-7397 Series E-ISSN 2197-568X
issn_series 0172-7397
copyrightSpringer International Publishing Switzerland 2017
The information of publication is updating

书目名称Elements of Nonlinear Time Series Analysis and Forecasting影响因子(影响力)




书目名称Elements of Nonlinear Time Series Analysis and Forecasting影响因子(影响力)学科排名




书目名称Elements of Nonlinear Time Series Analysis and Forecasting网络公开度




书目名称Elements of Nonlinear Time Series Analysis and Forecasting网络公开度学科排名




书目名称Elements of Nonlinear Time Series Analysis and Forecasting被引频次




书目名称Elements of Nonlinear Time Series Analysis and Forecasting被引频次学科排名




书目名称Elements of Nonlinear Time Series Analysis and Forecasting年度引用




书目名称Elements of Nonlinear Time Series Analysis and Forecasting年度引用学科排名




书目名称Elements of Nonlinear Time Series Analysis and Forecasting读者反馈




书目名称Elements of Nonlinear Time Series Analysis and Forecasting读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:12:14 | 显示全部楼层
Forecasting,ata up to a certain time t. In contrast, the situation becomes more complicated when real out-of-sample forecast are computed from parametric nonlinear time series models; in particular, as we explain below, this is a difficult issue for H ≥ 2 steps ahead.
发表于 2025-3-22 02:07:12 | 显示全部楼层
发表于 2025-3-22 08:07:49 | 显示全部楼层
Elements of Nonlinear Time Series Analysis and Forecasting978-3-319-43252-6Series ISSN 0172-7397 Series E-ISSN 2197-568X
发表于 2025-3-22 09:56:27 | 显示全部楼层
发表于 2025-3-22 13:32:57 | 显示全部楼层
发表于 2025-3-22 19:52:30 | 显示全部楼层
发表于 2025-3-22 22:01:02 | 显示全部楼层
Springer Series in Statisticshttp://image.papertrans.cn/e/image/307619.jpg
发表于 2025-3-23 02:56:54 | 显示全部楼层
发表于 2025-3-23 06:24:59 | 显示全部楼层
Gesunde Unternehmen in der Zugspitz-Region,lear as possible, we introduce in this chapter a number of classic parametric univariate nonlinear models. By “classic” we mean that during the relatively brief history of nonlinear time series analysis, these models have proved to be useful in handling many nonlinear phenomena in terms of both trac
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 09:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表